

ATAL BIHARI VAJPAYEE VISHWAVIDYALAYA BILASPUR (C.G.)

Pre Ph. D. Course work Examination 2019-20

MATHEMATICS

PAPER II: CW – 02 (TOOLS AND TECHNIQUES)

Model question paper

[Set – II]

Duration - 3.00 Hrs

Max. Marks - 80

Note: Section - A is Compulsory. Answer one question from each unit of Section - 'B' carrying equal marks

Section - A

1. Answer the following questions in brief.

2 X 10 = 20

- (i) What is Latex?
- (ii) Write Latex structure for Binomial coefficient.
- (iii) If $A = \frac{1}{x} + \frac{4}{y} + \frac{1}{z}$, find extended compliment of A.
- (iv) Prove that the standard fuzzy complement is not cut worthy property.
- (v) Define Lipschitz continuous function?
- (vi) Write an example of Lipschitz continuous function which is not differentiable?
- (vii) What is regularity of a Summation method?
- (viii) What is linear Transformation T of the sequence?
- (ix) What is order of approximation?
- (x) When a function is said to satisfy Lipschitz condition of order?

Section - B

12 X 5 = 60

UNIT – I

2. Discuss about Latex workflow?

3. Discuss the difference between Latex and MikTex.

UNIT – II

4. Prove first decomposition theorem for A where $X = \{x_1, x_2, x_3, x_4, x_5\}$ and $A = .2/x_1 + .4/x_2 + .6/x_3 + .8/x_4 + 1/x_5$

5. Let A and B be fuzzy sets defined on the universal set $X = Z$, where membership functions are given by

$$A(x) = 5/(-1) + 1/0 + .5/1 + .3/2 \quad \text{And} \quad B(x) = .5/2 + 1/3 + .5/4 + .3/5.$$

Let a function $f : X \times X \rightarrow X$ be defined for all $x_1, x_2 \in X$ by $f(x_1, x_2) = x_1 + x_2$ calculate $f(A, B)$.

UNIT – III

6. State and prove Brower's fixed point theorem.

7. Let X be a uniformly convex Banach space and $C \subset X$ be non – void closed bounded And convex. If $f : C \rightarrow C$ is a no – expansive then f has a fixed point in C.

UNIT – IV

8. Show that Eular method is regular.

9. Write short notes on following

- (i) (E,1) Sum (ii) (N, P_n) Sum (iii) (H, K) Sum (iv) (C, K) Sum

UNIT – V

10. State and prove Fejer's theorem.

11. Derive Dirichlet's Integral and obtain necessary and sufficient condition that the series $a_0/2 + (\sum_{n=1}^{\infty} h a_n \cos nx + b_n \sin nx)$ converges to a sum s.

====***====