

AE-760

M. Sc. (Final)
Term End Examination, 2016-17

CHEMISTRY

Paper - I

Application of Spectroscopy, Photochemistry
and Solid State Chemistry

Time : Three Hours] [Maximum Marks : 100
[Minimum Pass Marks : 36

Note : Answer any **five** questions. The figures in the right-hand margin indicate marks.

1. (a) Explain the characteristic vibrational frequencies of alkanes, alkenes and alkynes. 10
- (b) How will you differentiate between different types of hydrogen bonding by IR spectroscopy ? 6
- (c) How is the presence of anhydride group identified by IR spectroscopy ? 4

(2)

2. (a) Explain methods of the simplification of complex NMR spectra.	10
(b) Explain COSY, NOESY, APT and DEPT techniques.	10
3. (a) Discuss the applications of resonance Raman Spectroscopy.	6
(b) Explain the following : (i) Hyperfine coupling (ii) Significance of g-tensors	14
4. (a) Explain the principle and instrumentation of mass spectroscopy.	10
(b) Explain the factors affecting fragmentation.	5
(c) What are metastable peaks ?	5
5. (a) How can you calculate λ_{\max} value of conjugated dienes and conjugated carbonyl compounds by Fieser-Woodward rule ?	8
(b) Explain the various electronic transitions which take place between 185-800 nm.	8
(c) Explain Beer-Lambert law.	4
6. (a) Write note on circular dichroism and its applications.	8

(3)

(b) Explain following : 12

- (i) Nuclear magnetic double resonance
- (ii) Fourier transform technique

7. (a) Discuss types of photochemical reaction.
Derive equation for rate constant of any one photochemical reaction. 8

(b) Explain following photochemical reactions of aromatic compounds : 12

- (i) Isomerisation
- (ii) Addition reaction
- (iii) Substitution reaction

8. (a) Explain following photochemical reactions of carbonyl compounds : 12

- (i) Norrish type I reaction
- (ii) Norrish type II reaction
- (iii) Oxetane formation

(b) Discuss the photochemistry of vision and formation of photochemical smog. 8

9. (a) How will you differentiate among metal, insulators and semiconductors ? 4

(b) Explain p-n junction. 10

(c) Write a note on point defects. 6

(4)

10. Explain the following : 20

- (a) Optical properties of solids
- (b) Organic charge transfer complex
- (c) Thermodynamics of Frankel defect
- (d) Colour centers
