

AF-3560

M.A./M.Sc. (Previous)
Term End Examination, 2017-18

MATHEMATICS

Paper - VI

Differential Geometry of Manifold's

Time : Three Hours] [Maximum Marks : 100
[Minimum Pass Marks : 36

Note : Answer any **five** questions. All questions carry equal marks.

1. Let X be vector field on the smooth manifold M . Then the lie derivative L_x is the unique derivation of $\int^*(M)$ with the following properties :

(a) $L_x f = \langle df, x \rangle = Xf, \forall f \in C^\infty(M)$

(b) $L_x Y = [X, Y] \forall X, Y \in \text{Vect}(M)$

(2)

2. (a) Let M be a differentiable n -manifold and let P be any point in M . Prove that $T_p(M)$ is an n -dimensional vector space.
(b) Set and prove Local Immersion theorem.
3. (a) Show that the tangent bundle is a vector bundle.
(b) Show that the range of the zero section of a vector bundle $E \rightarrow M$ is a submanifold of E .
4. (a) Show that for each positive integer K the space R^K is a differential manifold.
(b) Prove that $X^T = K_M \circ TX$ for vector bundle homomorphism.
5. (a) State and prove Schur's Theorem.
(b) Define the following with example.
 - (i) Nijenhuis tensor
 - (ii) Conformal curvature tensor
 - (iii) Exterior derivative
 - (iv) Bundle homomorphism
6. (a) Let G be a Lie group and H a subgroup which is also a regular submanifold. Then with its differentiable structure as a submanifold H is a Lie group.

(3)

(b) If H is a regular submanifold and subgroup of a Lie group G , then prove that it is closed as a subset of G .

7. If $F: G_1 \rightarrow G_2$ is a homomorphism of Lie groups, then prove that :

- Rank of F is constant
- Kernel of F is Lie group
- $\dim(\text{Ker } F) = \dim G_1 - \text{rank } F$

8. State and prove Generalized Gauss and Mainardi-Codazzi equations.

9. (a) Prove that every vector bundle of dimension n over V is associated to a principal bundle over V with group $GL(n, R)$.

(b) Define the following :

- Tangent bundle
- Induced bundle
- Principle fibre bundle

10. (a) Prove that Riemannian geodesic is Locally minimizing.

(b) State and prove First variation formulae.
