

AE-799

M.A./M.Sc. (Previous)
Term End Examination, 2016-17

MATHEMATICS

Compulsory
Paper - I

Advanced Abstract Algebra

Time : Three Hours] [Maximum Marks : 100
[Minimum Pass Marks : 36

Note : Answer any **five** questions. All questions carry equal marks.

1. (a) Show that any subgroup of a solvable group is solvable.
(b) Let G be a nilpotent group. Then show that every subgroup of G and every homomorphic image of G are nilpotent.
2. (a) Define Normal Series, Subnormal Series and Composition Series with example .
(b) State and prove Jordan-Holder theorem for finite group.

(2)

3. (a) Define Permutation group. Prove that every group is isomorphic to a permutation group.
(b) Let G be a group and let G' be the derived group of G . Then show that—
 - (i) $G' \Delta G$;
 - (ii) G / G' is abelian ;
 - (iii) if $H \Delta G$, then $G' H$ is abelian if and only if $G' \subset H$.
4. (a) State and prove Third isomorphism theorem.
(b) State and prove Correspondence theorem.
5. (a) State and prove fundamental theorem of R-homomorphism.
(b) State and prove Schur's lemma.
6. (a) Define free modules. Let M be a finitely generated free module over a commutative ring R . Then show that all bases of M have the same number of elements.
(b) State and prove Rank-nullity theorem.
7. (a) Prove that $\text{Hom}_F(V, V) \sqcup F_n$ as algebras over F , when $\dim V = n$.
(b) Find the rank of the linear mapping
$$\phi : R^4 \rightarrow R^3$$

(3)

where

$$\begin{aligned}\phi(a, b, c, d) = & (a + 2b - c + d, -3a + b \\ & + 2c - d, -3a + 8b + c + d).\end{aligned}$$

- 8.** (a) Show that $x^3 + 3x + 2 \in \mathbb{Z}/(7)[x]$ is irreducible over the field $\mathbb{Z}/(7)$.
(b) Show that an element $a \in K$ is algebraic over F if and only if $[F(a) : F]$ is finite.
- 9.** (a) Define algebraically closed fields with example. Let F be a field. Then show that there exists an algebraically closed field K containing F as a subfield.
(b) Show that the prime field of a field F is either isomorphic to \mathbb{Q} or to $\mathbb{Z}/(p)$, p is prime.
- 10.** (a) State and prove Hilbert Basis Theorem.
(b) State and prove Fundamental Theorem of Galois theory.