

AE-813

M.A./M.Sc. (Final)
Term End Examination, 2016-17

MATHEMATICS

Optional

Paper - IX

Fuzzy Sets and Their Applications

Time : Three Hours] [Maximum Marks : 100
[Minimum Pass Marks : 36

Note : Answer any **five** questions. All questions carry equal marks.

1. (a) Show that sum and difference of two convex fuzzy sets are convex.
(b) Explain why we need fuzzy set theory.
2. (a) Explain interval-valued fuzzy sets, fuzzy sets of type-2 and L -fuzzy sets.

(2)

(b) Let $\tilde{A}_i \in F(x)$ for all $i \in I$,
where I is an index set. Then show that

$$\bigcup_{i \in I} \alpha \tilde{A}_i \subseteq \alpha \left(\bigcup_{i \in I} \tilde{A}_i \right)$$

3. (a) Explain Zadeh's extension principle.
(b) Let \tilde{A} and \tilde{B} are fuzzy numbers with triangular shape in a fuzzy equation, as

$$\tilde{A}(x) = \begin{cases} 0, & \text{for } x \leq 3, x > 5 \\ x-3, & \text{for } 3 < x < 4 \\ 5-x, & \text{for } 4 < x < 5 \end{cases}$$

$$\tilde{B}(x) = \begin{cases} 0, & \text{for } x \leq 12, x > 32 \\ (x-12)/8, & \text{for } 12 < x \leq 20 \\ (32-x)/12, & \text{for } 20 < x \leq 32 \end{cases}$$

Find the solution of the equation
 $\tilde{A} \cdot X = \tilde{B}$.

4. (a) Determine a transitive closure of the relation

$$\tilde{R} = \begin{bmatrix} 0.4 & 1.0 & 0.5 \\ 0.2 & 0.0 & 0.7 \\ 1.0 & 0.7 & 0.4 \end{bmatrix}$$

(3)

(b) Explain the following terms :

- (i) Fuzzy relation
- (ii) Max-Min composition
- (iii) Binary relation

5. (a) Let a given finite body of evidence (G, m) be nested then for all $A, B \in P(X)$. Show that

- (i) $\text{bel}(\tilde{A} \cap \tilde{B}) = \min[\text{bel}(\tilde{A}), \text{bel}(\tilde{B})]$
- (ii) $\text{pl}(\tilde{A} \cup \tilde{B}) = \max[\text{pl}(\tilde{A}), \text{pl}(\tilde{B})]$

(b) Explain the following terms :

- (i) Fuzzy measure
- (ii) Possibility distribution

6. (a) State and prove De-Morgan Law.

(b) Show that

$$(p \Rightarrow q) \Leftrightarrow (\neg p \vee q)$$

is tautology.

7. (a) Explain the type of fuzzy connectives.

(b) Explain fuzzy quantifiers.

8. (a) Explain approximate reasoning and fuzzy language with example.

(4)

(b) For the function $f(a) = \log(1 + a)$, $a \in [0, 1]$ find the pseudo inverse and fuzzy complement.

9. (a) Write basic assumption in a fuzzy control system design.
 (b) Explain fuzzy controllers and fuzzy automation operator.

10. Solve the following fuzzy linear programming problem :

$$\text{Max } Z = 0.5x_1 + 0.2x_2$$

$$\text{such that } x_1 + x_2 \leq B_1$$

$$2x_1 + x_2 \leq B_2$$

$$x_1, x_2 \geq 0$$

$$\text{where } B_1(x) = \begin{cases} 1 & ; \text{ for } x \leq 300 \\ \frac{400-x}{100} & ; \text{ for } 300 < x \leq 400 \\ 0 & ; \text{ for } x > 400 \end{cases}$$

$$\text{and } B_2(x) = \begin{cases} 1 & ; \text{ for } x \leq 400 \\ \frac{500-x}{100} & ; \text{ for } 400 < x \leq 500 \\ 0 & ; \text{ for } x > 500 \end{cases}$$