

AE-805

M.A./M.Sc. (Final)
Term End Examination, 2016-17

MATHEMATICS

Compulsory

Paper - I

Integration Theory and Functional Analysis

Time : Three Hours] [Maximum Marks : 100
[Minimum Pass Marks : 36

Note : Answer any **five** questions. All questions carry equal marks.

- 1.** (a) State and prove Extension theorem.
(b) State and prove Hahn decomposition theorem.
- 2.** (a) Explain the Baire sets and Baire measure.

(2)

(b) Let (X, A, μ) be finite measure space, let

$p > 1$ and $\frac{1}{p} + \frac{1}{q} = 1$. If F is a continuous

linear function of $Lp(X)$, then there exists
 $a, g \in Lq(X)$ such that

$$F(f) = \int_X fg \, d\mu, \text{ for all } f \in Lp(X)$$

and $\|F\| = \|g\|_q$. Prove it.

3. (a) Show that l_∞ , C , C_0 are nls each with the norm $\|x\| = \sup|x_n|$.

Does $\|x\| = \lim_{n \rightarrow \infty} |x_n|$ define a norm on C ?

(b) A nls X is complete if and only if every absolutely convergent series in X is convergent.

4. (a) Show that two equivalent norms on a linear space X induce the same topology on X .

(b) State and prove Fubini's theorem.

5. (a) State and prove Borel-Lebesgue theorem.

(b) Let $\{x_n\}$ be a weakly convergent sequence in a normed space X , i.e.
 $x_n \xrightarrow{w} x$. Then prove that

(3)

(i) Weak limit of the sequence $\{x_n\}$ is unique.

(ii) Every subsequence of $\{x_n\}$ converges weakly to x .

(iii) The sequence $\|x_n\|$ is bounded.

6. (a) State and prove Hahn-Banach theorem for real linear spaces.

(b) Show that the Schwarz inequality in Hilbert space.

7. (a) Explain the Gram-Schmidt orthogonalization process.

(b) Let $\{e_1, e_2, \dots, e_n\}$ be a finite orthonormal set in a Hilbert space H and x be any element of H . Then prove that

$$\sum_{i=1}^n |(x, e_i)|^2 \leq \|x\|^2$$

8. (a) If $T \in B(x, y)$, then prove that

$$T^* \in B(y^*, x^*) \text{ and } \|T\| = \|T^*\|.$$

(b) Let X and Y be normed spaces. Then prove that

(i) Every compact linear operator $T: X \rightarrow Y$ is bounded, hence continuous.

(4)

(ii) If X is infinite dimensional space, the identity operator $I : X \rightarrow X$ (which is continuous) is not compact.

9. (a) State and prove open mapping theorem.
(b) Let T be a closed linear map of a Banach space X into a Banach space Y . Then T is continuous. Prove it.

10. (a) State and prove closed range theorem.
(b) Show that every convergent sequence in a normal linear space a Cauchy sequence, but the converse need not be true.