

PD-483
(514) M.A./M.Sc. MATHEMATICS (FOURTH SEMESTER)
Examination JUNE 2021

Paper-IV

Name/Title of Paper-FUZZY SETS AND THEIR APPLICATION-II

[Maximum Marks: 80]

Time: 3:00 Hrs.]

[Minimum Pass Marks: ---]

Note: Answer from Both the Section as Directed. The Figures in the right-hand margin indicate marks.

Section(A)

Q.1 Answer the following questions:- 2X5

- a) What do you mean by probability assignment?
- b) Explain Multivalued logics.
- c) What do you mean by linguistic hedges?
- d) Define Meta Knowledge base?
- e) What do you understand by s-implications?

Q.2 Answer the following questions 2X5

- a. Prove that $\&$ is \emptyset valid inference from the premises $P \rightarrow \neg q, q \vee r, \neg s \rightarrow P$ and $\neg r$
- b. What do you mean by kernel of an expert system?
- c. Define Lukasiewicz implications?
- d. Write general form of fuzzy linear programming problem.
- e. What do you mean by fuzzification?

Section(A)

Q.3. Answer the following 12X5

- a. Write the properties of belief measure.
- b. A belief measure bel on finite power set $P(X)$ is a probability measure if and only if the associated basic probability assignment functions μ is given by $\mu(\{x\}) = bel(\{x\})$ and $\mu(A) = 0$ for all Subset S of X that are not singletons.

Or

- a. For every $A \in$

$P(X)$, any necessity measure 'nec' on $P(X)$ and the associated possibility measure 'pos',

Prove that

- i. $nec(A) > 0$ implies $pos(A) = 1$
- ii. $pos(A) < 1$ implies $nec(A) = 0$

- b. Explain the terms body of evidence & total ignorance.

Q.4 What do you mean by Fuzzy Quantifiers Discuss different types of Fuzzy Quantifiers in detail. Or, type

Q.5 Discuss the axioms of Fuzzy implications. Prove that a function

$J: [0,1]^2 \rightarrow [0,1]$ Satisfying all the axioms of fuzzy implications for fuzzy complement C if and only if there exists a strictly increasing continuous function $f: [0,1] \rightarrow [0, \infty]$ Such that

$$F(0,0)=0$$

$$J(a,b)=f^{-1}[f(1)-f(a)+f(b)], \forall a, b \in [0,1] \text{ and } C(a) = f^{-1}(f(1) - f(a))$$

OR

a. Write Short note on method of interpolation.

b. Consider the 'if -then' rules

- i. If X is A_1 , then y is B_1 ,
- ii. If x is A_2 , then y is B_2

Where A_j and B_j are Fuzzy sets such that

$$A_1 = \frac{1}{x_1} + \frac{.9}{x_2} + \frac{.1}{x_3}, \quad B_1 = \frac{1}{y_1} + \frac{.2}{y_2},$$

$$A_2 = \frac{.9}{x_1} + \frac{1}{x_2} + \frac{.2}{x_3}, \quad B_2 = \frac{.2}{y_1} + \frac{.9}{y_2}$$

Given the fact : X is A' , Where A'

$$A' = \frac{.8}{x_1} + \frac{.9}{x_2} + \frac{.1}{x_3},$$

Using Method of interpolation, Calculate the conclusion B' .

Q.6.

- a) Discuss the Fuzzy Expert System
- b) Write Short note on Centre of maxima method.

OR

- a) Discuss the Fuzzy Controller With Example.
- b) What do you mean by defuzzification method. Explain centroid method in detail.

Q.7

- a) Write Short note on Multicriteria decision making
- b) Consider an automation with $X = \{x_1, x_2\}$ $z = \{z_1, z_2, z_3\}$ and state – transitions function expressed by the matrix

$$\begin{matrix} & x_1 & x_2 \\ z_1 & \left[\begin{matrix} z_1 & z_2 \\ z_3 & z_1 \\ z_2 & z_3 \end{matrix} \right] \\ z_2 & \\ z_3 & \end{matrix}$$

Whose entries are next internal states for any given present internal and output states if

$$N=2 \text{ and Fuzzy goal at } t=2 \text{ is } c^2 = \frac{.3}{z_1} + \frac{.1}{z_2} + \frac{.8}{z_3},$$

The Fuzzy constraints at input at times $t=0$ and $t=1$ are

$$A^0 = \frac{.7}{x_1} + \frac{1}{x_2}$$

$$A^1 = \frac{1}{x_1} + \frac{6}{x_2}$$

Solve this multistage decision problem

OR

Solve the Following Fuzzy Linear programming Problem

$$\text{Max } z = 5x_1 + 4x_2$$

$$\text{S.t. } (4,2,1)x_1 + (5,3,1)x_2 \leq (24,5,8)$$

$$(4,1,2)x_1 + (1,5,1)x_2 \leq (12,6,3)$$

<https://www.abvvonline.com>

Whatsapp @ 9300930012

Send your old paper & get 10/-

अपने पुराने पेपर्स भेजे और 10 रुपये पायें,

Paytm or Google Pay से

<https://www.abvvonline.com>