

PF-361

M.A./M.Sc. Mathematics

3rd Semester Examination, Dec., 2022

Paper - II

Partial Differential Equations, Mechanics and Gravitation-I

Time : Three Hours] [Maximum Marks : 80
[Minimum Pass Marks : 29

Note : Answer from both the Sections as directed. The figures in the right-hand margin indicate marks.

Section-A

1. Choose the correct answer of the following : 1×10

(a) Which of the following is non-homogeneous heat equation?

(i) $U_t - \Delta U = 0$

(ii) $\Delta U = 0$

(iii) $U_{tt} - \Delta U = f$

(iv) None of these

(2)

(b) Which of the following is homogeneous wave equation?

(i) $U_t - \Delta U = 0$

(ii) $U_{tt} - \Delta U = 0$

(iii) $U_{tt} - \Delta U = f$

(iv) $\Delta U = f$

(c) Which of the following is Poisson equation?

(i) $\Delta U = 0$

(ii) $U_t - \Delta U = f$

(iii) $\Delta U = f$

(iv) $U_{tt} - \Delta U = f$

(d) If $\Delta U = 0$, then U is called :

(i) Laplace function

(ii) Poisson function

(iii) Harmonic function

(iv) None of the above

(e) If $U \in C^2(\Omega) \cap C(\bar{\Omega})$ is a harmonic function in a bounded domain Ω , then

$$\max_{\Omega} U =$$

$$(i) \min_{\Omega} U$$

(3)

(ii) $\min_{\Gamma} U$

(iii) $\max_{\Gamma} U$

(iv) None of these

(f) If $\phi(x, t)$ is the fundamental solution of the heat equation, then for $t > 0$; $\int_{R^n} \phi(x, t) dx =$

(i) 0

(ii) 1

(iii) 2

(iv) None of these

(g) If $L^{-1} \left\{ \frac{e^{-5s}}{(s-2)^4} \right\} = F(t)$, then which of the following is true ?

(i) $F(t) = 0$; $t < 5$

(ii) $F(t) = \frac{t^3 e^{2t}}{6}$; $t > 5$

(iii) $F(t) = 0$; $t > 5$

(iv) None of these

(4)

(h) If $\tilde{f}_s(P)$ is the finite Fourier sine transform of $f(x)$ over the interval $(0, l)$, then the inversion formula for sine transform is :

$$(i) f(x) = \sqrt{\frac{2}{\pi}} \int_0^{\infty} \tilde{f}_s(P) \sin px dp$$

$$(ii) f(x) = \sqrt{\frac{2}{\pi}} \int_0^{\infty} \tilde{f}_s(P) \cos px dp$$

$$(iii) f(x) = \frac{2}{\pi} \sum_{P=1}^{\infty} \tilde{f}_s(P) \sin px$$

$$(iv) f(x) = \frac{1}{l} \tilde{f}_s(0) + \frac{2}{l} \sum_{P=1}^{\infty} \tilde{f}_s(P) \sin px$$

(i) If the rod of density ρ and cross section k , be of infinite length in both directions then attraction, at any point which is at distance P from the rod is :

$$(i) \frac{\gamma k \rho}{P}$$

$$(ii) \frac{2 \gamma k \rho}{P}$$

(5)

$$(iii) \frac{\gamma k \rho}{\rho}$$

$$(iv) \frac{2\gamma k \rho}{P} \sin\left(\frac{APB}{2}\right)$$

(j) Let M be the mass of spherical shell whose radius is 6m. Then attraction at any point which is at distance 5m from the centre of the shell is :

$$(i) \frac{\gamma M}{36}$$

$$(ii) \frac{\gamma M}{25}$$

$$(iii) 0$$

(iv) None of these

2. Answer the following questions : 2×5

(a) Show that the attraction of a solid hemisphere at the centre of its plane base

is $\frac{3}{2} \frac{\gamma M}{a^2}$, where M is the mass and ' a ' is the radius.

(b) Find Laplace transform of $\sin \sqrt{+}$.

(c) Find Fourier sine transform of $\frac{e^{-ax}}{x}$.

(6)

(d) Spheres of constant radius b have their centres on the fixed circle $x^2 + y^2 = a^2, z = 0$. Prove that their envelop is the surface

$$(x^2 + y^2 + z^2 + a^2 - b^2)^2 = 4a^2(x^2 + y^2)$$

(e) If $\tilde{f}(P)$ is the complex Fourier transform of $f(x)$, then show that the Fourier transform of $f(x) \cos ax$ is

$$\frac{1}{2} [\tilde{f}(P-a) + \tilde{f}(P+a)].$$

Section-B

Answer the following long answer type questions : 12×

3. Find the fundamental solution of Laplace equation.

OR

If $U \in C(U)$ satisfies the mean value property for each ball $B(x, r) \subset U$, then show that $U \in C^\infty(U)$.

4. State and prove mean value formula for Laplace equation.

OR

State and prove mean value property for heat equation.

(7)

5. By using Laplace transform, solve

$$\frac{\partial y}{\partial x} = 2 \frac{\partial y}{\partial t} + y, y(x, 0) = 6e^{-3x}$$

which is bounded for $x > 0, t > 0$.

OR

Use finite Fourier transform, solve

$$\frac{\partial U}{\partial t} = \frac{\partial^2 U}{\partial x^2}; U(0, t) = 0;$$

$$U(4, t) = 0, U(x, 0) = 2x$$

where $0 < x < 4, t > 0$.

6. State and prove D'Alembert's formula.

OR

A vertical solid cylinder of height h , radius a and density ρ bounded by plane ends perpendicular to axis is divided by a plane through the axis into two parts. Show that the horizontal attraction of one part on a particle at the centre of the base is

$$2\gamma h \rho \log \left(\frac{a + \sqrt{a^2 + h^2}}{h} \right)$$

(8)

7. Show that the attraction of a spherical segment on a unit particle at its vertex is

$$2\pi\gamma\rho h \left[1 - \frac{1}{3} \sqrt{\frac{2h}{a}} \right]$$

and that on a unit particle at the centre of the base is

$$\frac{2\pi\gamma\rho h}{3(a-h)^2} \left[3a^2 - 3ah + h^2 - h^{1/2} (2a-h)^{3/2} \right]$$

where a is the radius and h the height of the segment.

OR

State and prove Poisson's equation in Cartesian form.