

PD-364-S.E.-CV-19
M.A./M.Sc. MATHEMATICS (3rd Semester)
Examination, Dec.-2020
Paper-V
OPERATION RESEARCH-I

Time : Three Hours

[Maximum Marks : 80]

Note : Answer from both the Sections as directed. The figures in the right-hand margin indicate marks.

Section-A

1. Choose the correct Answer:-

1x10=10

- (a) A constraint in an Lpp is expressed as.
 - (i) an equation with = sign
 - (ii) inequality with \geq sign
 - (iii) inequality with \leq sign
 - (iv) any of the above
- (b) If dual has unbounded solution, primal has.
 - (i) an unbounded solution
 - (ii) an infeasible solution
 - (iii) a feasible solution
 - (iv) none of the above
- (c) Dual simplex method is applicable to these Lpp's that start with.
 - (i) an infeasible solution
 - (ii) an infeasible but optimum solution
 - (iii) a feasible solution
 - (iv) a feasible and optimum solution
- (d) Given a system of m simultaneous linear equations in n unknown ($m < n$), the number of basic variable will be.
 - (i) m
 - (ii) n
 - (iii) $n-m$
 - (iv) $n+m$
- (e) Deviational variables in goal programming problem must satisfy following conditions:
 - (i) $d_i^+ + d_i^- = 0$
 - (ii) $d_i^+ - d_i^- = 0$
 - (iii) $d_i^+ \times d_i^- = 0$
 - (iv) $d_i^+ \div d_i^- = 0$
- (f) Karmarkar's algorithm.
 - (i) cuts across the interior of the solution space
 - (ii) reduces the number of iterations
 - (iii) is suitable for extremely large linear programming problems
 - (iv) all of the above
- (g) While solving a transportation problem, the occurrence of degeneracy means that.
 - (i) total supply equals total demand
 - (ii) the solution so obtained is not feasible
 - (iii) the few allocations become negative
 - (iv) none of the above
- (h) The method used for solving an assignment problem is called.
 - (i) MODI method
 - (ii) reduced matrix method
 - (iii) Hundarian method
 - (iv) none of the above
- (i) A minimal spanning tree involves.
 - (i) all the nodes with cycles allowed
 - (ii) all the nodes with cycles not allowed
 - (iii) the shortest path between starting and ending nodes
 - (iv) a connected network with all directed potential links
- (j) The term commonly used for activity slack time is.
 - (i) free float
 - (ii) independent float
 - (iii) total float
 - (iv) all of the above

2. Answer the following questions:-

2x5=10

- (a) Define slack and surplus variables in L.P.P.
- (b) Prove that the dual of the dual of a given primal is again primal.
- (c) Write a short note on parametric linear programming.
- (d) Explain North-West corner method to solve transportation problem for an initial solution.
- (e) Explain the following:
 - (i) a tree
 - (ii) a spanning tree

Answer all questions.

3. Solve the following L.P.P. by using simplex method.

Maximize $z = 5x_1 + 4x_2$

Subject to the constraints:

$$4x_1 + 5x_2 \leq 10, \quad 3x_1 + 2x_2 \leq 9, \quad 8x_1 + 3x_2 \leq 12$$

$$x_1 \geq 0 \text{ and } x_2 \geq 0$$

OR

Use penalty method to solve the following L.P.P.-

Maximize $z = 2x_1 + 3x_2$

Subject to the constraints:

$$x_1 + 2x_2 \leq 4, \quad x_1 + x_2 = 9; \quad x_1 \geq 0 \text{ and } x_2 \geq 0$$

4. Write down the dual of the following L.P.P. and solve

Maximize $z = 8x_1 + 4x_2$

Subject to the constraints:

$$4x_1 + 2x_2 \leq 30, \quad 2x_1 + 4x_2 \leq 24, \quad x_1 \text{ and } x_2 \geq 0$$

OR

Use dual simplex method to solve the L.P.P.

Maximize $z = x_1 + 2x_2 + 3x_3$

Subject to the constraints:

$$x_1 - x_2 + x_3 \geq 4, \quad x_1 + x_2 + 2x_3 \leq 8,$$

$$x_2 - x_3 \geq 2; \quad x_1, x_2, x_3 \geq 0$$

5. Using the bounded variable technique, solve the following L.P.P.

Maximize $z = x_2 + 3x_3$

Subject to the constraints:

$$x_1 + x_2 + x_3 \leq 10, \quad x_1 - 2x_3 \geq 0, \quad 2x_2 - x_3 \leq 10,$$

$$0 \leq x_1 \leq 8, \quad 0 \leq x_2 \leq 4, \quad x_3 \geq 0$$

OR

For the following L.P.P.

Maximize $z = (3 - 6\lambda)x_1 + (2 - 2\lambda)x_2 + (5 - 5\lambda)x_3$

Subject to the constraints:

$$x_1 + 2x_2 + x_3 \leq 430, \quad 3x_1 + 2x_3 \leq 460,$$

$$x_1 + 4x_2 \leq 420, \quad x_1, x_2, x_3 \geq 0$$

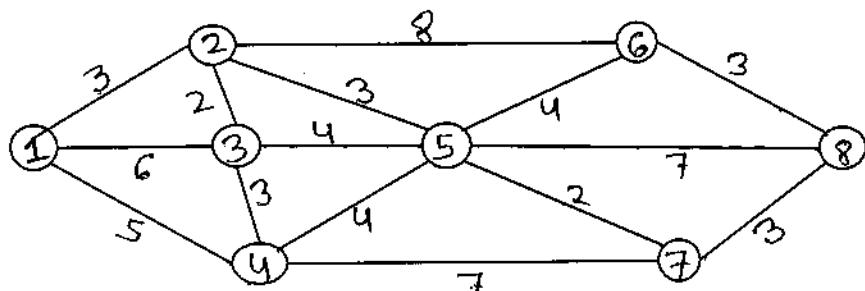
find the range of λ over the solution remains basic and optimal.

6. Consider a transportation problem with $m=3$ and $n=4$, where:

$$c_{11} = 2, \quad c_{12} = 3, \quad c_{13} = 11, \quad c_{14} = 7$$

$$c_{21} = 1, \quad c_{22} = 0, \quad c_{23} = 6, \quad c_{24} = 1$$

$$c_{31} = 5, \quad c_{32} = 8, \quad c_{33} = 15, \quad c_{34} = 9$$


Suppose $s_1 = 6, s_2 = 1$ and $s_3 = 10$ where $D_1 = 7, D_2 = 5, D_3 = 3$, and $D_4 = 2$, Apply the transportation simplex method to find out an optimal solution.

OR

Solve the following assignment problem:

	M ₁	M ₂	M ₃	M ₄
J ₁	5	8	3	2
J ₂	10	7	5	8
J ₃	4	10	12	10
J ₄	8	6	9	4

7. Consider the following network

The distance (in miles) between different stations is shown on each link, determine the shortest route from station 1 to 8.

OR

A small project consists of seven activities for which relevant data are given below:

Activity	Preceding Activities	Activity Duration (Days)
A	-	4
B	-	7
C	-	6
D	A, B	5
E	A, B	7
F	C, D, E	6
G	C, D, E	5

- (i) Draw the network and find the project completion time.
- (ii) Calculate total float for each of the activities and highlight the critical path.
- (iii) Draw the time scaled diagram.