

PE-361

(513) M.A./M.Sc. MATHEMATICS (Third Semester) EXAMINATION, DEC.-2021 Paper - II

PARTIAL DIFFERENTIAL EQUATIONS, MECHANICS AND GRAVITATION-I

Time : Three hours]

[Maximum Marks : 80

Note : Answer from both the Sections as directed. The figures in the right-hand margin indicate marks.

Section-A

1. Answer the following very short answer type questions : 1×10=10

- (1) Laplace equation is called.....
- (2) Heat equation, also known as the.....
- (3) Write formula for one-dimensional wave equation.
- (4) Find the degree of P.D.E. :

$$\frac{\partial^2 z}{\partial t^2} = C^2 \frac{\partial^2 z}{\partial y^2}$$

- (5) Find $L\{F(t)\}$ where $F(t) = 1$
- (6) Find $L\{F(t)\}$ where $F(t) = \cosh at$
- (7) If P be a particle of unit mass and Q another particle of mass and r the distance between them force of attraction is.....
- (8) Find order and degree of P.D.E.

$$\left(\frac{\partial z}{\partial x}\right)^3 + \frac{\partial z}{\partial x} = 0$$

- (9) Find the order of P.D.E.

$$\frac{\partial^2 z}{\partial x^2} + xy \frac{\partial z}{\partial x} + y = 0$$

- (10) Find the Laplace transform of the function :

$$F(t) = t^n, n = 0, 1, 2, 3, \dots$$

2. Answer the following short answer type questions : 2×5=10

- (1) Write short notes on Legendre's transformation. (only formula)
- (2) Find the complete integral $(p^2 + q^2)x = pz$.
- (3) Find the Laplace transform of the function $F(t) = \sin t \cos t$ for if $p \neq n$.
- (4) Find the Fourier cosine transform of $f(x)$ if $f(x) = \sin nx$.
- (5) Find the attraction of a uniform solid right circular cone of height h and verticle angle 2α at the vertex of the cone.

Section-B

Answer long type questions :

12×5=60

3. Find the Fundamental solution of Heat equations.

OR

[P.T.O.]

To find the attraction of a thin uniform rod at an external point.

4. Find the complete integral :

$$2z - px^2 - 2qxy + pq = 0$$

OR

Solve :

$$p = (z + 9y)^2$$

5. Find the solution of wave equation by spherical means for $n = 1$.

OR

A frustum of a uniform thin hollow cone attracts a particle placed at the vertex, show that attraction is $2\pi Y e \sin \alpha \cos \alpha \log \frac{R}{r}$.

where R and r are the radii of the circular ends, α the semi-verticle angle and e the surface density.

6. Solve : $\frac{\partial y}{\partial t} = 2 \frac{\partial^2 y}{\partial x^2}$

where $y(0, t) = 0 = y(5, t)$ and

$y(x, 0) = 10 \sin 4\pi x$.

OR

Find :

$$L^{-1} \left\{ \frac{1}{(p+1)(p^2+1)} \right\}$$

7. Show that the attraction of a solid hemisphere at the centre of its plane base is $\frac{3}{2} Y \frac{M}{a^2}$ where M is the mass and a is the radius.

OR

Evaluate :

$$L^{-1} \left\{ \frac{p+1}{p^2+6p+25} \right\}$$

<https://www.abvvonline.com>

Whatsapp @ 9300930012

Send your old paper & get 10/-

अपने पुराने पेपर्स भेजे और 10 रुपये पायें,

Paytm or Google Pay से