

PF-364

M.A./M.Sc. Mathematics

3rd Semester Examination, Dec., 2022

Paper - V

Operation Research - I

Time : Three Hours] [Maximum Marks : 80

Note : Answer from **both** the Sections as directed. The figures in the right-hand margin indicate marks.

Section-A

1. Answer the following questions : 1×10

(a) The statement "O.R. is a scientific knowledge through interdisciplinary team effort for the purpose of determining the best utilization of limited resources," is given by

(2)

(b) Draw graph of the constraint $x_1 + x_2 \leq 6$, $x_1 \geq 0, x_2 \geq 0$.

(c) "For every primal constraint, there is a dual variable." This statement is correct or not ?

(d) if x_0 is an optimal solution to the primal and B is the primal optimal basis, then an optimal solution to the dual is given by

(e) Define parametric linear programming problem.

(f) What is Optimality test ?

(g) When does a transportation problem have a unique solution ?

(h) What is a balanced transportation problem ?

(i) What is Network Scheduling ?

(j) What is full form of CPM ?

2. Answer the following questions : 2×5

(a) What is Judgement phase of scientific method in O.R. ?

(3)

(b) Write the dual of the L.P.P.:

$$\text{Minimize } z = 4x_1 + 6x_2 + 18x_3$$

Subject to the constraints :

$$x_1 + 3x_2 \geq 3$$

$$x_2 + 2x_3 \geq 5$$

$$\text{and } x_1, x_2, x_3 \geq 0$$

(c) What is goal programming?

(d) Write steps of Vogel's approximation method.

(e) Write any two distinction between PERT and CPM.

Section-B

Answer the following questions :

12×5

3. Use the graphical method to solve the following L.P.P.:

$$\text{Minimize } z = -x_1 + 2x_2$$

Subject to the constraints :

$$-x_1 + 3x_2 \leq 10$$

$$x_1 + x_2 \leq 6$$

$$x_1 - x_2 \leq 2$$

$$\text{and } x_1 \geq 0, x_2 \geq 0$$

OR

State and prove the fundamental theorem of linear programming.

(4)

4. Use duality to solve the following L.P.P.:

$$\text{Maximize } z = 2x_1 + x_2$$

Subject to the constraints :

$$x_1 + 2x_2 \leq 10$$

$$x_1 + x_2 \leq 6$$

$$x_1 - x_2 \leq 2$$

$$x_1 - 2x_2 \leq 1$$

$$\text{and } x_1, x_2 \geq 0$$

OR

Use dual simplex method to solve the following L.P.P.:

$$\text{Minimize } z = 3x_1 + x_2$$

Subject to the constraints :

$$x_1 + x_2 \geq 1$$

$$2x_1 + 3x_2 \geq 2$$

$$\text{and } x_1, x_2 \geq 0$$

5. Consider the parametric L.P.P.:

$$\text{Maximize } z = 3x_1 + 2x_2 + 5x_3$$

Subject to the constraints :

$$x_1 + 2x_2 + x_3 \leq 430 + \mu$$

$$3x_1 + 2x_3 \leq 460 - 4\mu$$

$$x_1 + 4x_2 \leq 420 - 4\mu$$

$$\text{and } x_1, x_2, x_3 \geq 0$$

(Turn Over)

(5)

Determine the critical values (range) of μ for which the solution remains optimum basic feasible.

OR

Solve the following linear goal programming problem graphically :

Find x_1 and x_2 so as to :

$$\text{Minimize } z = G_1(d_3^+ + d_4^+) + G_2 d_1^+ + G_3 d_2^-$$

$$+ G_4 \left(d_3^- + \frac{3}{2} d_4^- \right) \text{ and}$$

Satisfy the goals :

$$G_1 : x_1 + x_2 + d_1^- + d_1^+ = 40$$

$$G_2 : x_1 + x_2 + d_2^- - d_2^+ = 100$$

$$G_3 : x_1 + d_3^- - d_3^+ = 30$$

$$G_4 : x_2 + d_4^- - d_4^+ = 15$$

$$x_i, d_i^-, d_i^+ \geq 0, \text{ for all } i=1,2,3,4$$

The goals have been listed in order of priority.

(Turn Over)

(6)

6. Obtain an initial basic feasible solution to the following T.P. using the Vogel's approximation method :

Warehouse	Stores				Availability
	I	II	III	IV	
A	5	1	3	3	34
B	3	3	5	4	15
C	6	4	4	3	12
D	4	-1	4	2	19
Requirement	21	25	17	17	80

OR

How the problem of degeneracy arises in a transportation problem ? Explain how does one overcome it ?

7. "A transportation problem is a minimum cost flow problem." Explain.

OR

A project consists of a series of tasks labelled A, B, \dots, H, I with the following relationships ($W < X, Y$ means X and Y cannot start until W is completed; $X, Y < W$ means W cannot start until both X and Y are completed). With this notation construct the network diagram having the following constraints :

$$A < D, E; B, D < F; C < G; B, G < H; F, G < I$$

(7)

Find also the minimum time of completion of the project, when the time (in days) of completion of each task is as follows :

Task	<i>A</i>	<i>B</i>	<i>C</i>	<i>D</i>	<i>E</i>	<i>F</i>	<i>G</i>	<i>H</i>	<i>I</i>
Time	23	8	20	16	24	18	19	4	10