

PF-363**M.A./M.Sc. Mathematics**

3rd Semester Examination, Dec., 2022

Paper - IV**Fuzzy Sets and Their Applications-I****Time : Three Hours]****[Maximum Marks : 80**

Note : Answer from **both** the Sections as directed. The figures in the right-hand margin indicate marks.

Section-A1. Answer the following questions : 1×10

(a) Given two fuzzy sets, A and B , their standard intersection, $A \cap B$ and standard union $A \cup B$ are defined for all $x \in X$ by the equations

(b) Given a fuzzy set A defined on X and any $\alpha \in [0, 1]$, $\alpha^+A = ?$

(c) Give example of a fuzzy complement that is continuous but not involutive.

(d) For each $a, b \in [0, 1]$, drastic union $u(a, b) = ?$

(e) If A and B are fuzzy numbers, then for all $z \in R$, $(A \cdot B)(z) = ?$

(f) If R is the set of all fuzzy numbers, then define absorption laws for MIN and MAX operations from $R \times R \rightarrow R$.

(g) Given a fuzzy relation $R(X, Y)$, its domain is defined by

(h) Every fuzzy relation R can be uniquely represented in terms of its α -cuts by the formula

(i) Write any one equation from the matrix equation

$$\begin{bmatrix} P_{11} & P_{12} & P_{13} \\ P_{21} & P_{22} & P_{23} \end{bmatrix} \circ \begin{bmatrix} .9 & .5 \\ .7 & .8 \\ .1 & .4 \end{bmatrix} = \begin{bmatrix} .6 & .3 \\ .2 & .1 \end{bmatrix}$$

(3)

(j) Let the t -norm i employed in the fuzzy relation equation $P \stackrel{i}{\circ} Q = R$ be the product

and let $Q = \begin{bmatrix} .1 \\ .2 \\ .3 \end{bmatrix}$ and $R = \begin{bmatrix} .12 \\ .18 \\ .27 \end{bmatrix}$. Then

$$\hat{P} = ?$$

2. Answer the following questions : 2×5

(a) State first decomposition theorem.
 (b) Define t -conorm.
 (c) If A and B are two fuzzy numbers on X defined by

$$A(x) = \begin{cases} 0, & \text{if } x \leq 3 \text{ and } x > 5 \\ x-3, & \text{if } 3 < x \leq 4 \\ 5-x, & \text{if } 4 < x \leq 5 \end{cases} \quad \text{and}$$

$$B(x) = \begin{cases} 0, & \text{if } x \leq 12 \text{ and } x > 32 \\ (x-12)/8, & \text{if } 12 < x \leq 20 \\ (32-x)/12, & \text{if } 20 < x \leq 32 \end{cases}$$

then find the solution of the fuzzy equation $A \cdot X = B$.

(4)

(d) Explain strong fuzzy homomorphism.
 (e) If $S(Q, R) \neq \emptyset$, then prove that $\hat{P} = R \stackrel{w_i}{\circ} Q^{-1}$ is the greatest member of $S(Q, R)$.

Section-B

Answer any five of the following questions : 12×5

3. Complete the scalar cardinalities for each of the following fuzzy sets :

(a) $C(x) = \frac{x}{x+1}, x \in \{0, 1, \dots, 10\}$

(b) $D(x) = 1 - \frac{x}{10}, x \in \{0, 1, \dots, 10\}$

and then prove that $|C| + |D| = |C \cup D| + |C \cap D|$, where \cap , \cup are the standard fuzzy intersection and union respectively.

4. Let $A, B \in \mathfrak{P}(X)$ and $\alpha \in [0, 1]$. Then prove the following :

(a) ${}^\alpha(A \cup B) = {}^\alpha A \cup {}^\alpha B$

(b) ${}^\alpha(\overline{A}) = (1-\alpha) + \overline{A}$

(5)

5. For all $a, b \in [0, 1]$ prove that

$$i_{\min}(a, b) \leq i(a, b) \leq \min(a, b)$$

where i_{\min} denotes the drastic intersection.

6. State and prove fundamental theorem of t -conorms.

7. Explain the four basic arithmetic operations on fuzzy numbers with example.

8. Let R denote the set of all fuzzy numbers. Let MIN and MAX are operations from $R \times R \rightarrow R$ defined by

$$\text{MIN}(A, B)(z) = \sup_{z=\min(x, y)} \min[A(x), B(y)]$$

$$\text{MAX}(A, B)(z) = \sup_{z=\max(x, y)} \min[A(x), B(y)],$$

$$z \in R$$

Then prove that $\langle R, \text{MIN}, \text{MAX} \rangle$ is a distributive lattice.

(6)

9. Define transitive fuzzy closure. Also determine the transitive max-min closure $R_T(X, X)$ for a fuzzy relation $R(X, X)$ defined by the membership matrix

$$R = \begin{bmatrix} .7 & .5 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & .4 & 0 & 0 \\ 0 & 0 & .8 & 0 \end{bmatrix}$$

10. Determine partition trees for the following similarity relation $R(X, X)$:

$$\begin{array}{ccccccc} & a & b & c & d & e & f & g \\ a & 1 & .8 & 0 & .4 & 0 & 0 & 0 \\ b & .8 & 1 & 0 & .4 & 0 & 0 & 0 \\ c & 0 & 0 & 1 & 0 & 1 & .9 & .5 \\ d & .4 & .4 & 0 & 1 & 0 & 0 & 0 \\ e & 0 & 0 & 1 & 0 & 1 & .9 & .5 \\ f & 0 & 0 & .9 & 0 & .9 & 1 & .5 \\ g & 0 & 0 & .5 & 0 & .5 & .5 & 1 \end{array}$$

11. Explain problem partitioning with example.

(7)

12. Solve the following fuzzy relation equation
for max-min composition :

$$P \circ = \begin{bmatrix} .9 & .6 & 1 \\ .8 & .8 & .5 \\ .6 & .4 & .6 \end{bmatrix} = \begin{bmatrix} .6 & .6 & .5 \end{bmatrix}.$$
