

PF-365

M.A./M.Sc. Mathematics

3rd Semester Examination, Dec., 2022

Paper - IV

Fluid Mechanics-I

Time : Three Hours]

[Maximum Marks : 80

Note : Answer from both the Sections as directed. The figures in the right-hand margin indicate marks.

Section-A

1. Answer the following questions : 1×10

- (a) Write the differential equation for path lines.
- (b) If the motion is irrotational, then curl $\bar{q} = ?$
- (c) Define streamlines.
- (d) Write the energy equation for incompressible fluid.
- (e) Velocity potential ϕ satisfies which equation?
- (f) Write the main difference between Eulerian and Lagrangian method.

(2)

- (g) Write the Euler's equation of motion in x -direction.
- (h) Write the statement of Milne-Thomson circle theorem.
- (i) Define source and sink.
- (j) Explain image system.

2. Answer the following questions : 2×5

- (a) Show that $\frac{x^2}{a^2} f(t) + \frac{y^2}{b^2} f(t) = 1$ is possible form of boundary surface.
- (b) Find the equation of continuity for cylindrical symmetry.
- (c) Show that the curve of $\phi(x, y) = \text{constant}$ and $\psi(x, y) = \text{constant}$ cut orthogonally at their point of intersection.
- (d) Discuss the physical significance of streamlines.
- (e) What arrangement of source and sink will give rise to the function $w = \log\left(z - \frac{a^2}{z}\right)$?

Section-B

Answer the following questions :

3. Find the equation of continuity in spherical polar coordinates. 12×5

OR

(3)

Find the Euler's equation of motion in vector form.

4. If every particle moves on the surface of a sphere, prove that the equation of continuity

$$\text{is } \frac{\partial p}{\partial t} \cos \theta + \frac{\partial}{\partial \theta} (p w \cos \theta) + \frac{\partial}{\partial \phi} (p w' \cos \theta) = 0$$

ρ being the density, θ and ϕ the latitude and longitude of any element and w and w' the angular velocity of the element in latitude and longitude respectively.

OR

An infinite fluid in which a spherical hollow shell of radius a is initially at rest under the action of no forces. If a constant pressure π is applied at infinity, show that the time of

filling up the cavity is $\pi^2 a \left(\frac{\rho}{\pi} \right)^{\frac{1}{2}} 2^{\frac{5}{2}} \left\{ \left[\left(\frac{1}{3} \right) \right]^{-3} \right\}$.

5. State and prove Bernoulli's theorem due to streamlines.

OR

In the case of the two dimensional fluid motion produced by a source of strength m placed at a point S outside a rigid circular disc of radius a whose centre is O , show that the velocity of slip of the fluid in contact with disc is greatest at the points where the

(4)

lines joining S to the ends of diameter at right angles to OS . Cut the circle and prove that

its magnitude of these points is $\frac{2m \cdot OS}{(OS^2 - a^2)}$.

6. Find the image of a doublet in circle.

OR

Between the fixed boundaries $\theta = \frac{\pi}{6}$ and

$\theta = \frac{-\pi}{6}$ there is a two dimensional liquid motion due to a source at the point $(r = c, \theta = \alpha)$ and a sink at the origin, absorbing water at the same rate as the source produce it. Find the stream function and show that one of the streamline is a part of the curve. $r^3 \sin 3\alpha = c^3 \sin 3\theta$.

7. State and prove Blasius theorem.

OR

Find the velocity potential and stream function at any point of a liquid contained between two coaxial cylinder of radii a and b ($a < b$) when the cylinders are moved suddenly parallel to themselves in direction as right angles with velocities U and V respectively.