——
— (2)
== PF-365
== .. the Euler’s equation of motion in
. . (g) Wnite the
M.A./M.Sc. l_\f‘lal_hematlcs L-direction.
3rd Semester Examination, Dec., 2022 () Writc the statement of Milne-Thomson

paper _ Iv circle theorem.
() Define source and sink.

Fluid Mechanics-I () Explain image system.

2. Answer the following questions : 2x5
Time : Three Hours] [Maximum Marks : 80 , )
X Y _ X
Note : Answer from both the Sections as directed. The Aa) Show that a_zf(‘]J*b_zf(f)—l is
figures in the right-hand margin indicate marks. possible form of boundary surface.
. (b) Find the equation of continuity for
Section-A cylindrical symmetry.
1. Answer the following questions : 1x10 Fr:) aSIl:gw that the curve of ¢ (x, y) = constant
(a) Write the differential equation for path 1 ¥ (x, y) = constant cut orthogonally at
lines their point of intersection.
) . .. . (d) Discuss the physical signi
gnificance
(b) If the motion is irrotational, then curl reamlines. of
c =7 :
qg = (e) Whal arrangement of source and sink wil]
(c) Define strcamlines. give rse 1o the function
(d) Write the energy equation for 2
. . _ a
incompressible fluid. w=log z__;]?
(e) Velocity potential ¢ satisfies which
/7 equation? Section-B
(f) Write the main difference between z;nsv.'cr the following questions : 12x5
. . . . Find th : .
Fulerian and Lagrangian method. ¢ equation of contin . .
polar coordinates, "y I spherical
(Turn Over) OR
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Find the Euler’s equation of motion in vector
form.

If every particle moves on the surface of a
sphere, prove that the equation of continuity

is %IEmsEl +%(pwcosﬂ)+-a%(pu/msﬂ) =0
p being the density, © and ¢ the latitude and
longitude of any element and w and w’ the
angular velocity of the element in latitude and
longitude respectively.

OR

An infinite fluid in which a spherical hollow
shell of radius a is initially at rest under the
action of no forces. If a constant pressure m
is applied at infinity, show that the time of

L -3
filling up the cavity is nza[%)z 26 {G)} .

State and prove Bernoulli’s theorem due to
streamlines.
OR

In the case of the two dimensional fluid
motion produced by a source of strength m
placed at a point § outside a rigid circular
disc of radius ¢ whose centre is O, show that
the velocity of slip of the fluid in contact
with disc is greatest at the points where the
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lines joining S to the ends of diameter at right
s to OS. Cut the circle and prove that
2m-OS
its magnitude of these points is (OSI—GZ)-

angle

Find the image of a doublet in circle.
OR

v
Between the fixed boundaries H=E and

6= there is a two dimensional liquid
motion due to a source at the point
(r=c, 0=0a) and a sink at the origin,
absorbing water at the same rate as the source
produce it. Find the stream function and show
that one of the streamline is a part of the
curve. rsin 3o = ¢3 sin 30.

State and prove Blasius theorem.
OR

Find the velocity potential and stream function
at any point of a liquid contained between
two coaxial cylinder of radii @ and b (a < b)
when the cylinders are moved suddenly
parallel to themselves in direction as right
angles with velocities U and ¥ respectively.
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