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Note : Answer from both the Sections as directed. The
figures in the right-hand margin indicate marks.

Section-A

1. Answer the following questions : 1x10

(@) A signed measure | is said to be totally
finite if ........
(b) A Borel measurable set is .......
(c) If w and v are both o-finite, then they
have a ...... .
~ (d) Every Borel set is 0-bounded if and only
if .......

(e) A set Ein § is said to be inner regular
" with respect to p if ...... .

(2)

(Y The Radon-Nikoedym theorem remains
true even if ...

If w is signed measure on measurable
space (X, 4) and EC X is measurable,
then E is positive 1f .......

(&)

(#) Hahn decomposition is unique except for

(#) If v 1s signed measure such that v I p

and v << pu, then the ...... of v is .......
(/) If p is the Borel measure induced by a
regular content A, then pu(C)=...... for
every C is L.
2. Answer the following questions : 2x5

(a) Define section of any subset.

(b) Define measurable rectangle.

(c) Define Positive set and Negative set.
(d) State Lebesgue Decomposition theorem.
(e) State Riesz representation theorem.
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Section-B .
Answer all questions : 12x5
3. State and prove Radon-Nikodym theorem.
OR
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(3)

Let £ be a measurable set of finite measure.
Then prove that £ contains a positive set A
with p (4) > 0.

Show that if V,and V, are any two finite
signed measures then so is o ¥, + B V,, where
o, PBare real numbers. Show that

laVi=la| | V] and |V, +V,|<|V,|+]| V,|

where V<pu means V(EY<u(E) for all
measurable set E.

OR

St:ow that the collection. E* of all
K -measurable sets is o-algebra contaihjng E.

Also if <4 > is a disioi .
n Joimnt sequen
then prove that uence n £
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S.  Using Fubini’s theorem verify
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OR

(4)

Prove that necessary and sufficient condition

that a function should be an indefinite integral
is that it should be absolutely continuous.

If u is a Baire measure and if for every C

n
x(c)=mf{;§(vﬂ):ccuﬂ eUﬂ}

Then A is a regular content.
OR

Show that the Borel measure p is not regular.

(a) Prove that a Borel measurable set is
Lebesgue measurable.

(b) Prove that every Borel measure is o-
finite.

OR

(a) Prove that finite disjoint union of inner
regular sets of finite measure is inner
regular.

&) If _r¢d*1=f¢dl3 for all ¢ €L, then prove
that o, B have the same discontinuties.




