



(2)

PF-360

M.A./M.Sc. Mathematics

3rd Semester Examination, Dec., 2022

Compulsory

Paper - I

Integration Theory and Functional Analysis - I

Time : Three Hours]

[Maximum Marks : 80

Note : Answer from both the Sections as directed. The figures in the right-hand margin indicate marks.

Section-A

1. Answer the following questions : 1×10

- (a) A signed measure μ is said to be totally finite if
- (b) A Borel measurable set is
- (c) If μ and ν are both σ -finite, then they have a
- (d) Every Borel set is σ -bounded if and only if
- (e) A set E in \hat{S} is said to be inner regular with respect to μ if

(f) The Radon-Nikodym theorem remains true even if

(g) If μ is signed measure on measurable space (X, A) and $E \subseteq X$ is measurable, then E is positive if

(h) Hahn decomposition is unique except for

(i) If ν is signed measure such that $\nu \perp \mu$ and $\nu \ll \mu$, then the of ν is

(j) If μ is the Borel measure induced by a regular content λ , then $\mu(C) = \dots$ for every C is ζ .

2. Answer the following questions : 2×5

- (a) Define section of any subset.
- (b) Define measurable rectangle.
- (c) Define Positive set and Negative set.
- (d) State Lebesgue Decomposition theorem.
- (e) State Riesz representation theorem.

Section-B

Answer all questions : 12×5

3. State and prove Radon-Nikodym theorem.

OR

(3)

Let E be a measurable set of finite measure. Then prove that E contains a positive set A with $\mu(A) > 0$.

4. Show that if V_1 and V_2 are any two finite signed measures then so is $\alpha V_1 + \beta V_2$, where α, β are real numbers. Show that

$$|\alpha V| = |\alpha| |V| \text{ and } |V_1 + V_2| \leq |V_1| + |V_2|$$

where $V \leq \mu$ means $V(E) \leq \mu(E)$ for all measurable set E .

OR

Show that the collection E^* of all μ^* -measurable sets is σ -algebra containing E . Also if $\{A_n\}$ is a disjoint sequence in E^* then prove that

$$\mu^*\left[\bigcup_{n=1}^{\infty} A_n\right] = \sum_{n=1}^{\infty} \mu^*(A_n)$$

5. Using Fubini's theorem verify

$$\int_0^1 \left[\int_0^1 \frac{x-y}{(x+y)^3} dx \right] dy \neq \int_0^1 \left[\int_0^1 \frac{x-y}{(x+y)^3} dy \right] dx$$

OR

(4)

Prove that necessary and sufficient condition that a function should be an indefinite integral is that it should be absolutely continuous.

6. If μ is a Baire measure and if for every C in ζ

$$\lambda(C) = \inf \left\{ \mu(U_0) : C \subset U_0 \in \zeta \right\}$$

Then λ is a regular content.

OR

Show that the Borel measure μ is not regular.

7. (a) Prove that a Borel measurable set is Lebesgue measurable.
 (b) Prove that every Borel measure is σ -finite.

OR

(a) Prove that finite disjoint union of inner regular sets of finite measure is inner regular.

(b) If $\int \phi d\alpha = \int \phi d\beta$ for all $\phi \in L$, then prove that α, β have the same discontinuities.