

PD-360-S.E.-CV-19
M.A./M.Sc. MATHEMATICS (3rd Semester)
Examination, Dec.-2020
Paper-I

INTEGRATION THEORY AND FUNCTIONAL ANALYSIS-I

Time : Three Hours]

[Maximum Marks : 80

[Minimum Pass Marks : 29

Note : Answer from both the Sections as directed. The figures in the right-hand margin indicate marks.

Section-A

1. Answer the following questions:- 1x10=10
 - (a) If μ is signed measure on a measurable space (X, A) then $\mu(\emptyset) = \dots$
 - (b) A signed measure μ is said to be totally finite if.....
 - (c) $\mu \ll \nu$ and $\nu(A)=0, \forall A \in A$ Then $\mu(A)=\dots$
 - (d) Any bounded linear functional on L^p can be written as the difference of two.....
 - (e) If μ and ν are any two measures on a σ ring then ν is absolutely continuous with respect to.....
 - (f) A set E is said to be of the type $F\sigma$ if.....
 - (g) Every Borel set is σ -bounded if and only if.....
 - (h) A set E in \mathbb{R} is said to be inner regular with respect to μ if.....
 - (i) Define section of a set.
 - (j) Define content.
2. Answer the following questions:- 2x5=10
 - (a) Prove that every section of a measurable set is measurable set.
 - (b) Let E and F are measurable set and μ is a signed measure such that $E \subset F$ and $|\mu(F)| < \infty$ then prove that $|\mu(E)| < \infty$
 - (c) If $E_1 = A_1 \times B_1$ and $E_2 = A_2 \times B_2$ are non empty rectangle then $E_1 \subset E_2$ if and only if $A_1 \subset A_2$ and $B_1 \subset B_2$
 - (d) Prove that a Borel measurable set is lebesgue measurable.
 - (e) If μ is the Borel measure induced by a regular content λ , then prove that $\mu(c) = \lambda(c)$ for every c

Section-B

12x5=60

Answer all questions.

3. State and prove Riesz representation theorem.

OR

If E is a measurable set with finite negative measure. Then prove that E contains a negative set A with $\mu(A) < 0$

4. State and prove Radon-Nikodym theorem.

OR

If $\{E_n\}$ is a disjoint sequence in A^* then prove that

$$\mu^*(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \mu^*(E_n)$$

5. Using Fubini's theorem verify.

$$\int_0^1 \left\{ \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} dx \right\} dy \neq \int_0^1 \left\{ \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} dy \right\} dx$$

OR

Let $\{A_K \times B_K\}_{K=1}^{\infty}$ be a disjoint collection of measurable rectangles whose union is a measurable rectangle $A \times B$ then prove that $\mu(A) \times \mu(B) = \sum_{K=1}^{\infty} \mu(A_K) \times \mu(B_K)$

6. Prove that a function f is of bounded variation if and only if it can be expressed as a difference of two monotonic function both non-decreasing.

OR

Prove that every compact Bair set is G_s type.

7. If μ_0 is a Baire measure and if for every c in
 $\lambda(c) = \inf\{\mu_0(u_0: c \subseteq u_0)\}$ then prove that λ is a regular content.
OR
Prove that inner contents λ^* induced by a content λ vanishes at 0 and is
monotonic, countably sub additive and countably additive.