

PD-363-S.E.-CV-19
M.A./M.Sc. MATHEMATICS (3rd Semester)
Examination, Dec.-2020
Paper-IV
FUZZY SETS AND THEIR APPLICATIONS-I

Time : Three Hours]

[Maximum Marks : 80
[Minimum Pass Marks : 29]

Note : Answer from both the Sections as directed. The figures in the right-hand margin indicate marks.

Section-A

1. Answer following questions:-

1x10=10

(a) If A is a fuzzy set given by

$$f(x) = \begin{cases} 1, & \text{when } x \leq 20 \\ \frac{(35-x)}{15}, & \text{when } 20 < x < 35 \\ 0, & \text{when } x \geq 35 \end{cases}$$

Then for $\alpha \in [0, 1]$, $\alpha + A = \text{-----}$

(b) If for $x, y \in R$ and $\lambda \in [0, 1]$, A is a fuzzy set such that $A(x) = .5$ and $A(y) = .7$, then the value of $A(\lambda x + (1 - \lambda)y)$ is -----

(c) If A is a fuzzy set on $X = \{1, 3, 5, 7, 9\}$ given by $A(1) = 0.1$, $A(3) = 0.5$, $A(5) = 0.3$, $A(7) = 0.7$ and $A(9) = 0.9$, then the standard complement \bar{A} of fuzzy set A is -----

(d) If $i : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is a t-norm, then the algebraic product $i(0.5, 0.4) = \text{-----}$

(e) If $u : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is a t-co.norm then the bounded sum $u(0.5, 0.5) = \text{-----}$

(f) If A is a fuzzy number defined by

$$f(x) = \begin{cases} 0, & \text{for } x \leq -1 \text{ and } x > 3 \\ \frac{(x+1)}{2}, & \text{for } -1 < x \leq 1 \\ \frac{(3-x)}{2}, & \text{for } 1 < x \leq 3 \end{cases}$$

Then $0.5_A = \text{-----}$

(g) For any two fuzzy numbers A and B define $\text{MIN}(A, B)$ and $\text{MAX}(A, B)$.

(h) If $R(X, Y)$ is a fuzzy relation, then $\text{dom}R(x) = \text{-----}$ for all $x \in X$

(i) Define sup-I composition of two fuzzy relations $P(X, Y)$ and $Q(Y, Z)$.

(j) Define INF- w_l compositions of fuzzy relations.

2. Answer all questions:-

2x5=10

(a) If $A = \frac{0.2}{2} + \frac{0.3}{3} + \frac{0.4}{4} + \frac{0.4}{5} + \frac{0.7}{6}$ is a fuzzy set on $X = \{2, 3, 4, 5, 6\}$, then find value of $\wedge(A)$?

(b) State third decomposition theorem.

(c) Define drastic intersection.

(d) Define a fuzzy number.

(e) Define compatibility relation.

Section-B

12x5=60

Answer any five of the following questions.

3. Let A, B be fuzzy sets defined on a universal set X . Prove that $|A| + |B| = |A \cup B| + |A \cap B|$ where \cap, \cup are standard fuzzy intersection and union respectively.

4. Let A and B be fuzzy sets defined on the universal set $X = Z$ whose membership functions are given by
- $$A(x) = \frac{.5}{(-1)} + \frac{1}{0} + \frac{.5}{1} + \frac{.3}{2} \quad \text{and} \quad B(x) = \frac{.5}{2} + \frac{1}{3} + \frac{.5}{4} + \frac{.3}{5}$$
- Let $f: X \times X \rightarrow X$ be defined by $f(x_1, x_2) = x_1 + x_2$
 For all $x_1, x_2 \in X$. Calculate $f(A, B)$.
5. Let f be a decreasing generator. Then prove that a function g defined by $g(a) = f(0) - f(a)$ for any $a \in [0, 1]$ is an increasing generator with $g(1) = f(0)$, and its pseudo-inverse $g^{(-1)}$ given by $g^{(-1)}(a) = f^{(-1)}(f(0) - a)$ for any $a \in R$.
6. Let $* \in \{+, -, \cdot, /\}$ and let A, B denote continuous fuzzy numbers. Then prove that the fuzzy set $A * B$ defined by $(A * B)(z) = \sup \min[A(x), B(y)]$ for all $z \in R$, $z = x * y$
7. Explain fuzzy morphisms with suitable example.
8. Explain problem partitioning with suitable example.
9. Prove that $\tilde{P} = (Q \underset{0}{\overset{w}{\wedge}} R^{-1})$ is the greatest approximate solution of $P_0^t Q = R$.
10. For any fuzzy relation R on X^2 , prove that fuzzy relation $R_{T(t)} = \bigcup_{n=1}^{\infty} R^{(n)}$ is the t -transitive closure of R .