

AI-1550
M.A./M.Sc. (Final) Mathematics
Examination- MAR-APR 2021
Compulsory/Optional
Paper-VI
Paper Title: Fluid Mechanics

Time:- Three Hours]

[Maximum Marks:100
[Minimum Marks: 036

Note: Answer any five questions. All question carry equal marks.

1. Determine the acceleration at the point (2,1,3) at $t=0.5\text{sec}$. If $u = yz + t$, $v = xz + t$ and $w = xy$.
2. A mass of fluid is in motion so that the liner of motion lie on the surface of coaxial cylinder, show that the equation of continuity is $\frac{\partial p}{\partial t} + \frac{1}{r} \frac{\partial(\rho U_\theta)}{\partial \theta} + \frac{\partial(\rho V_z)}{\partial z} = 0$ where V_θ, V_z , are the velocities perpendicular and parallel to Z .
3. If the velocity of an incompressible fluid at the point (x,y,z) is given by $\left(\frac{3xy}{r^5}, \frac{3yz}{r^5}, \frac{3z^2-r^2}{r^5}\right)$ prove that the liquid motion is possible and the velocity potential is $\frac{\cos \theta}{r^2}$.
4. Show that the ellipsoid $\frac{x^2}{a^2 k^2 t^{2n}} + kt^n \left(\frac{y^2}{b^2} + \frac{z^2}{c^2}\right) = 1$ is a possible form of the boundary surface of a liquid.
5. Show that $\int \frac{dp}{e} + \frac{1}{2} q^2 + V = C$ where the motion is steady and the velocity potential does not exist, V being the potential from which the external forces are derivable.
6. Air obeying Boyle's law is in motion in a uniform tube of small section, prove that if e be the density and v the velocity at a distance x from a fixed point at time t $\frac{\partial^2 e}{\partial t^2} - \frac{\partial^2}{\partial x^2} \{(V^2 + k)e\}$
7. Find complex Potential for a Source.
8. Use the method of images to prove that if there be a surface m at point in a fluid bounded by the liner $\theta = 0$ and $\theta = \frac{1}{3}\pi$ the solution is $\emptyset + i\psi = -m \log((z^3 - z_0^3)(z^3 - z'_0^3))$ where $z_0 = x_0 + iy_0$ and $z'_0 = x_0 + iy_0$.
9. A sphere of radius a is moving with constant velocity U through an infinite liquid at rest at infinity. If P_0 be the pressure at infinity show that the pressure at any point of the surface of the sphere, the radius to which point makes an angle θ with the direction of motion is given by $P = P_0 + \frac{1}{2} \rho U^2 \left(1 + \frac{9}{4} \sin^2 \theta\right)$.
10. Show that the flux of velocity through any cross-section of a vertex tube is a constant all along the tube.