

AH 1549 CV-19
M.A./M.Sc. (Final)
Term End Examination, 2019-20
MATHEMATICS
Paper- V
Difference Equations

Time:- Three Hours]

[Maximum Marks:100

Note: Answer **any five** question. All Question carry equal marks.

1. (a) State and prove fundamental theorem of finite difference.
 (b) Express $f(x) = x^4 - 12x^3 + 24x^2 - 30x + 9$ in term of the factorial notation.
2. (a) Calculate the value of
 - (i) $\Delta^2 O^5$
 - (ii) $\Delta^5 O^5$
 (b) Prove that if m is positive integer then
 - (i) $\Delta^2 x^{(m)} = m(m-1)x^{(m-2)}$
 - (ii) $x^{(m+1)} + mx^{(m)} = x \cdot x^{(m)}$
3. (a) Solve following difference equation.

$$a_r - 4a_{r-1} + 4a_{r+2} = 0, a_0 = 1, a_1 = 3$$
 (b) Solve following difference equation by matrix method

$$a_{r+2} - a_r = 0, a_0 = 1, a_1 = 2$$
4. (a) Solve following difference equation by using generating function

$$a_{r-2}a_{r-1} + a_{r-2} = 2^r, r \geq 0$$
 Given that $a_0 = 2, a_1 = 1$

 (b) Using 2-transform solve the equation

$$a_r - 3a_{r-1} - 4a_{r-2} = 8r + 6$$
5. Explain the following-
 - (i) Green function
 - (ii) Disconjugacy
 - (iii) Sturmian theory
 - (iv) Chaotic behaviour
6. (a) State and prove fundamental lemma of calculus of variations.
 (b) Derive Euler's equation for extremely solution of a function.
7. (a) Explain the asymptotic behaviour of solution of perturbed equation.
 (b) Find non-trivial solution of the Sturm-Liouville problem

$$\frac{d^2y}{dx^2} + \lambda y = 0, y(0) = 0, y' \left(\frac{\pi}{2} \right) = 0$$
8. (a) State and solve Brachistochrone Problem.
 (b) Solve following functional

$$I[y] = \int_0^4 [xy' - y'^2] dx, y(0) = 0, y(4) = 3$$
9. (a) State and prove the Sturm separation theorem.
 (b) If $\overline{L_n}$ is the adjoint operator of L_n then L_n is the adjoint operator of $\overline{L_n}$.
10. for the system of equations

$$\frac{dx}{dt} = 2x - y + 2xy$$

$$\frac{dy}{dt} = x - 2y - xy$$

Verify that (0,0) is a critical point show that the system is almost linear and discuss the type and stability of the critical point (0,0)