

Time:- Three Hours]

[Maximum Marks:80

नोट : दोनो खण्डों से निर्देशानुसार उत्तर दीजिए। प्रश्नों के अंक उनके दाहिनी ओर अंकित हैं।

Note: Answer from Both the Section as Directed. The Figures in the right-hand margin indicated marks.

Section-A

1. Answer the following question: 1x10

(a) Write approximate value of Euler's constant.
 (b) The Riemann's functional equation $\varphi(z)$ is defined for -----.
 (c) The radius of convergence of series

$$\sum_{n=0}^{\infty} \frac{z^n}{z^{n+1}} \text{ is -----}$$

(d) The order of $2z^3 + 5z^2 + 1$ is 2 (True/False)
 (e) The order of e^z is 1 (True/False)
 (f) If $g(z)$ is a polynomial of order 2 then the order of $e^{g(z)}$ is -----.
 (g) If $f(z)$ is an entire function that omits two values then $f(z)$ is -----.
 (h) The Bloch's constant B is defined for -----.
 (i) The Landau's constant L is defined for -----.
 (j) If the exponent of convergence of zeros of canonical product is n then the order of this canonical product is -----.

2. Answer the following question: 2x5

(a) Prove that

$$\sqrt{z+1} = z\sqrt{z}, z \neq 0, -1, -2 \text{ -----}$$

(b) Prove that analytic continuation of an analytic function is unique .

(c) Find the order of $f(z) = e^{e^z}$.

(d) Define canonical product of finite order.

(e) Prove that the inverse of Univalent function is Univalent.

Section-B

Answer any five the following question: 5x12

3. If $|z| \leq 1$ and $P \geq 0$ then $|1 - E_{p(z)}| \leq |z|^{p+1}$

OR

State and prove Mittag-Leffler theorem.

4. State and prove Schwarz's Reflation Principle.

OR

(a) Find the analytic continuation of the function

$$f(z) = \int_0^{\infty} t^2 e^{-zt} dt$$

(b) Use the Schwarz's Reflection Principle prove that

$$\overline{\sin z + \cos z} = \sin \bar{z} + \cos \bar{z}$$

5. (a) State and prove Harnack's Inequality.
 (b) Prove that

$$\sin hz = \prod_{n=1}^{\infty} \left(1 + \frac{z^2}{n^2 z^2}\right)$$

OR

Let $P(z)$ be a canonical product of finite order p and $q > 0$ and $\epsilon > 0$ then for all sufficiently large $|z|$

$$\log|P(z)| > -|z|^{p+\epsilon}$$

6. State and prove Bloch's theorem.

OR

State and prove Schottky's theorem

7. Let f be an entire function of genus μ then prove that for each positive number α there exist a number r_0 such that

$$|f(z)| < \exp(\alpha|z|^{\mu+1}), |z| > r_0$$

OR

(a) Use Hadamard's factorization theorem to show that

$$\text{Sim } \pi z = \pi z \prod_{n=0}^{\infty} \left(1 - \frac{z^2}{n^2}\right)$$

(b) Let g be analytic in $B(O, R)$, $g(O) = 0$, $|g'(0)| = \mu > 0$ and $|g(z)| \leq M$ for all z

Then prove that :

$$g[B(O; R)] \supset B(O; \frac{R^2 \mu^2}{6M})$$