

PD-256
M.A./M.Sc. Mathematics (SECOND SEMESTER)
Examination- JUNE-2021
Compulsory/Optional
Group -
Paper-IV
COMPLEX ANALYSIS (II)

Time:- Three Hours]

[Maximum Marks:80

नोट : दोनों खण्डों से निर्देशानुसार उत्तर दीजिए। प्रश्नों के अंक उनके दाहिनी ओर अंकित हैं।

Note: Answer from Both the Section as Directed. The Figures in the right-hand margin indicated marks.

Section-A

1. Answer the following question: 1x10

- a. Wallis formula is-----
- b. What is the Riemann zeta function?
- c. Define function element of z .
- d. What is Natural boundary?
- e. Define Harmonic conjugate.
- f. What is poisson kernel?
- g. Define convex function.
- h. Write standard form for an entire function.
- i. Define Bloch's constant.
- j. Write univalent function.

2. Answer the following question: 2x5

- (a) If $|z| \leq 1$ and $P \geq 0$. Then $|1-E_p(z)| \leq |z|^{P+1}$ when $E_p(z)$ is elementary factor.
- (b) Find the radians of convergence for $\sum_{n=1}^{\infty} \left(\frac{z^n}{2^{n+1}} \right)$
- (c) Write Dirichlet Region.
- (d) Find the order of the function $\cos Z$ and $\sin Z$
- (e) Write the statement of $\frac{1}{4}$ - Theorem.

Section-B

Answer any five the following question: 5x12

- 3. State & prove Legendre's duplication formula.
- 4. State & prove Euler's product formula.
- 5. State & prove schwarz's reflection principle for symmetric region.
- 6. state & prove monodromy theorem.
- 7. state & prove Harnack's Inequality.
- 8. Let G and Ω be regions such that there is a one-one analytic function of G an to Ω . Let $a \in G$ and $\varphi = F(a)$. If g_a and $V\varphi$ are the greens fuctions for G and Ω with singularities a and φ respectively, then $G_a(z) = V\varphi(f(z))$
- 9. state & prove Jense's formula.
- 10. state & prove Hadamards three circles theorem.
- 11. state & prove Blochs theoem.
- 12. state & prove Schottkys theorem.