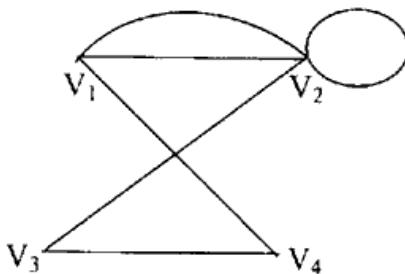


PD-257 CV-19
(512) M.A./M.Sc. Mathematics (Second Semester)
Examination June 2021
ADVANCED DISCRETE MATHEMATICS (II)
Paper - V

Time : Three Hours]


Maximum Marks : 80

Minimum Passing Marks : 29

Note : Answer the questions from both the Sections as directed. The figures shown at the right side indicate the marks.

SECTION – A

1. Answer the following questions: [1 X 10]
 - (a) Define Null graph.
 - (b) Define planar graph.
 - (c) Define type – 3 grammar.
 - (d) Write Euler's formula for connected planar graph with n vertices e edges and r regions.
 - (e) Define binary tree.
 - (f) Define equivalent machine.
 - (g) Find the adjacency matrix X for the given multigraph.

- (h) Define Regular Grammar.
- (i) Write the following production in BNF

$$S \rightarrow A, \quad S \rightarrow aB, \quad S \rightarrow aAb$$
- (j) A connected graph G is if deletion of any edge from G , disconnects the graph G .

2. Answer the following short answer type questions : [2 X 5]
 - (a) Define Non-Deterministic Finite Automata.
 - (b) Explain Bipartite graph.
 - (c) Obtain grammar for language $L = \{a^m b^n : m > n, n > 0\}$
 - (d) Define Moor machine.
 - (e) Define Homeomorphic graph.

SECTION – B

Answer the following questions : [12 X 5]

3. (a) Write short notes on Grammar.
- (b) Construct a grammar for the language $L = \{a^x b^y : x > y > 0\}$

OR

<https://www.abvvonline.com>

(a) Let G be a grammar with vocabulary $V = \{S, 0, 1\}$, set of terminal $T = \{0, 1\}$ the starting symbol S and the productions are given by $S \rightarrow 11 < S > 10$. Find $L(G)$.

(b) Design a finite state machine M which can add two binary numbers.

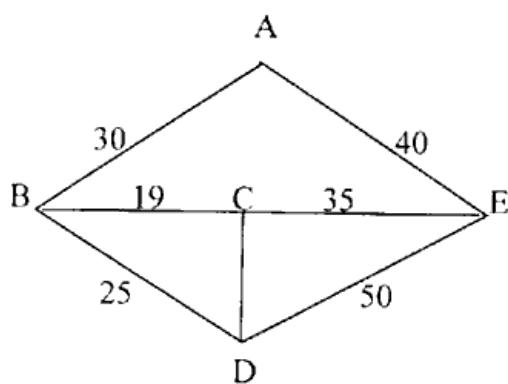
4. (a) Let $M = (S, I, O, f, g, s_0)$ be a finite state machine. The relation K -equivalence on the set S of all states of M is an equivalence relation.

(c) Minimize the finite state machine given by the table :

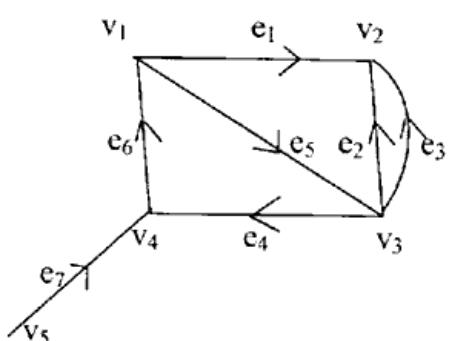
State	Input		Output
	0	1	
A	D	B	1
B	E	B	0
C	D	A	1
D	C	D	0
E	B	A	1

OR

(a) Describe Mealy machine with an example.


(b) Define Turing machine and construct a Turing machine for adding two non-negative integers.

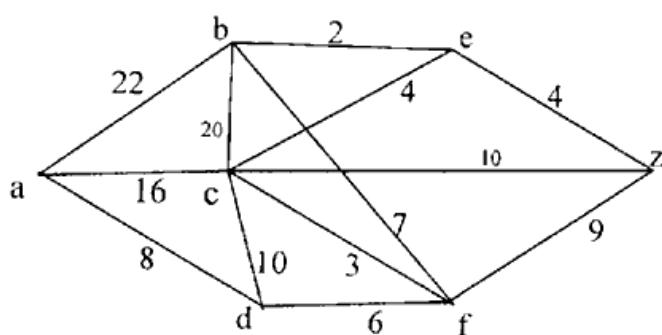
5. (a) A connected graph G is an Euler graph if and only if G is the union of some edges disjoint circuits.


(b) What is the maximum number of vertices in a graph with 35 edges and all vertices are of degree at least 3. <https://www.abvvonline.com>

OR

(a) Solve the travelling salesman problem for the following graph:

(b) Define incidence matrix and find incidence matrix of the given digraph:



6. State and prove Euler's formula for connected planar graph.

OR

Let G be a simple graph with n vertices if G has K component then the maximum number of edges that can have are $\frac{(n-k)(n-k+1)}{2}$

7. Write algorithm for shortest path and find shortest path from a to z in the following graph where number associated with the edges are the weights.

OR

Define spanning tree with example. To prove that "Every connected graph has at least one spanning tree.

<https://www.abvvonline.com>

Whatsapp @ 9300930012

Send your old paper & get 10/-

अपने पुराने पेपर्स भेजे और 10 रुपये पायें,

Paytm or Google Pay से