

AI-1541

M. A./M. Sc. (Previous)
Term End Examination, 2020-21
MATHEMATICS

Paper : Third
(Topology)

Time Allowed : Three hours

Maximum Marks : 100

Minimum Pass Marks : 36

Note : Answer any five questions. All questions carry equal marks.

1. (a) Let $\{\mathcal{J}_\lambda : \lambda \in \Lambda\}$ where Λ is an arbitrary set, be a collection of topologies for X . Then prove that the intersection $\bigcap \{\mathcal{J}_\lambda : \lambda \in \Lambda\}$ is also a topology for X .

[2]

(b) In a topological space X prove that a subset A of X is closed iff $D(A) \subset A$.

2. (a) Show that a topological space X is disconnected if and only if there exists a non empty proper subset of X which is both open and closed in X .

(b) Show that a subset of a topological space is open if and only if it is the neighbourhood of each of its points.

3. (a) Let Y be a subspace of a topological space X . If $A \subset Y$ is open (closed) in X , then A is also open (closed) in Y .

(b) Let X and Y be topological spaces. A mapping $f : X \rightarrow Y$ is continuous if and only if the inverse image under f of every closed set in Y is closed in X .

4. (a) Show that two closed (open) subsets A and B of a topological space are separated if and only if they are disjoint.

(b) Show that continuous image of a connected space is connected.

5. (a) Let Y be a subspace of a topological space X and let $A \subset Y$. Then show that A is compact relative to X if and only if A is compact relative to Y .

(b) Show that closed subsets of compact sets are compact.

6. (a) Show that every closed subspace of a Lindelof space is Lindelof.

(b) Show that every T_3 space is T_2 space.

7. State and prove Tietze extension theorem.

8. Let (X, \mathcal{J}) be a topological space and let $Y \subset X$. Then, show that Y is \mathcal{J} -open iff no net in $X - Y$ can converge to a point.

9. State and prove Tichonoff theorem.

10. Prove that, every filter on a set X is contained in an ultrafilter on X .