

AI-1540 CV-19
M.A./M.Sc. (Previous)
Term End Examination, 2020-21
MATHEMATICS
(Real Analysis and Measure Theory)
Paper - II

Time : Three Hours

[Maximum Marks : 100]
[Minimum Pass Marks : 36]

Note : Answer any five questions. All questions carry equal marks.

1. (a) If the $\lim_{\|p\| \rightarrow 0} s(p, f, \alpha)$ exists, then prove that
 $f \in R(\alpha)$ and $\lim_{\|p\| \rightarrow 0} s(p, f, \alpha) = \int_a^b f d\alpha$
2. (a) Prove that the sum of an absolute convergent series does not alter with any rearrangement of terms.
(b) Let $\alpha(x) = |x|^3$ then find the value of $\int_{-1}^2 x^5 d\alpha$
3. (a) State and prove Cauchy General principle of uniform convergence.
(b) Show that the sequence $\{f_n\}$ where $f_n(x) = \frac{x}{1+nx^2}$
Converges uniformly on \mathbb{R}
4. (a) Let $\{f_n\}$ be a sequence of real valued function on a metric space (X, d) which converges uniformly to the function f on X . If each f_n ($n=1, 2, 3, \dots$) is continuous on X then f is also continuous on X .
(b) Test for uniform convergence and term by term integration of series $\sum \frac{x}{(n+x^2)^2}$
5. (a) Find the radius of convergence of the power series.
(i) $\sum_{n=1}^{\infty} \frac{3^n}{\sqrt{n+1}}$ (ii) $\sum_{n=1}^{\infty} \frac{n!}{n!} 3^n$
(b) State and prove Tauber's Theorem.
6. State and prove Inverse function Theorem.
7. (a) Find the shortest distance from the point $(3/2, 0)$ to the parabola $y^2 = 4x$
(b) State and prove chain rule.
8. (a) Let $\{E_n\}$ be a countable collection of sets of real numbers then prove that

$$m^*(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} m^*(E_n)$$

(b) Prove that a continuous function defined on a measurable set is measurable.
9. (a) State and prove Bounded convergence theorem.
(b) Let f be a bounded function defined in $[a, b]$ If f is Riemann integrable over $[a, b]$, then it is Lebesgue integrable and

$$R \int_a^b f(x) dx = \int_a^b f(x) dx$$
10. (a) If f is absolutely continuous on $[a, b]$ then prove that f is of bounded variation.
(b) Let $1 \leq p \leq \infty$ and let $f, g \in L^p(\mu)$, then $f+g \in L^p(\mu)$ and $\|f+g\|_p \leq \|f\|_p + \|g\|_p$