

AI-1539
M.A./M.Sc. (Previous)
Mar.-Apr. 2021
Compulsory/Optional
Group- MATHEMATICS
Paper-

Name/Title of Paper- ADVANCED ABSTRACT ALGEBRA
Time: 3:00 Hrs.]

[Maximum Marks: 100
[Minimum Pass Marks: 36

Note: Attempt any five questions. All questions carry equal marks.

1. a. Let G be a group and let G' be the derived group of G then show that
 - i. G/G' is abelian
 - ii. If $H \leq G$ Then G/H is abelian if and only if $G' \leq H$.
b. Show that every important group is solvable.
2. a. Let H and K be distinct maximal normal Subgroup of G . Then Show that $H \cap K$ is a Maximal normal Subgroup of H and also of K .

b. Show the a simple group is Soluble if and only if it is cyclic.
3. a. Give an example of a non-abelian group each of whose Subgroup is normal.

b. If G is a Cyclic group such that $|G| = P_1 P_2 \dots P_r$ distinct Primes, Show That the number of distinct composition series of G is $r!$
4. a. Let N be a normal Subgroup of the group G . Then Show that G/N is a group under multiplication, The mapping
 $\emptyset: G \rightarrow G$ Given by $x \rightarrow xn$, is a surjective homomorphism and $\text{Ker } \emptyset = N$.

b. Let Show that a group of order P^n (P Prime) is impotent.
5. a. Show that In a nonzero Commutative ring with unit and ideal M is maximal if and only if R/M' is a field.

b. Let A and B be two $m \times n$ Matrices over a field F . Show that $\text{rank}(A + B) \leq \text{rank}A + \text{rank}B$.
6. a. Let R be a Commutative ring with unity in which each ideal is prime then show that R is a field.

b. Show that the Sub modules of the quotient module M/N are of the form U/N , Where U is a Sub module of M Containing N .
7. a. Let $P(x)$ be an irreducible polynomial if $F[x]$. Then Show That There exists an extension E of F in Which $P(x)$ has a root.

b. Is $R\sqrt{-5}$ normal over R ?
8. a. Prove that $\sqrt{2}$ and $\sqrt{3}$ are algebraic over Q . find the degree of $Q(\sqrt{2} + \sqrt{3})$ over Q .

b. Let F be a finite field. Then Show that there exists an irreducible polynomial of any given degree n over F .

9. a. Let A be a minima left ideal in a ring R . Then show that either $A^2=(0)$ or $A=R$, There is an idempotent in R .

b. Let H be a finite Subgroup of the group of automorphism of field E , Then Show that

$$[E:E_H]=[H]$$

10. a. Let N be a nil ideal in a noetherian ring R , Then Show that N is idempotent.

b. Show that the Polynomial $x^7-10x^5+15x+5$ is not Solvable by radical over \mathbb{Q} .