

PD-155-S.E.-CV-19
M.A./M.Sc. MATHEMATICS {1st Semester}
Examination, Dec.-2020
Paper-
TOPOLOGY (I)

Time : Three Hours]

[Maximum Marks : 80

[Minimum Pass Marks : 29]

Note : Answer from both the Sections as directed. The figures in the right-hand margin indicate marks.

Section-A

1. Answer the following questions:- 1x10=10
 - (a) Define discrete topology.
 - (b) If F_1 and F_2 be two closed subsets of a topological space X , then show that $F_1 \cup F_2$ is a closed set.
 - (c) Define sub-base for a topology.
 - (d) Define closure of a set.
 - (e) Define homeomorphism in topological spaces.
 - (f) Define Normal space.
 - (g) Show that every discrete space is a T_0 space.
 - (h) If (R, U) is usual topology, write interior of $A = (0, 1)$
 - (i) Let $X = \{a, b, c\}$ and $T = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ is topology on write one neighborhood of $A = \{a, c\}$
 - (j) Define completely regular space.
2. Answer the following questions:- 2x5=10
 - (a) Let (X, T) be a topological space and let A, B be any two subsets of X , then show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - (b) Write Kuratowski closure axioms.
 - (c) Let $X = \{a, b, c\}$ and $T = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$ is a topology on X . Find the limit points of the set $A = \{a, c\}$.
 - (d) Show that every metric space is a T_2 space.
 - (e) Show that the property of being T_0 space is hereditary.

Section-B

12x5=60

Answer all questions.

3. Let (X, T) be a topological space and $A \subset X$ then prove that $\bar{A} = \{y \in X : \text{every nbd of } y \text{ meets } A \text{ non - vacously}\}$

OR

Let A and B be any two subsets of topological space (X, T) then prove the following

- (i) $D(\emptyset) = \emptyset$
- (ii) $A \subset B \Rightarrow D(A) \subset D(B)$
- (iii) $D(A \cap B) \subset D(A) \cap D(B)$
- (iv) $D(A \cup B) = D(A) \cup D(B)$

4. (a) Show that a constant function is continuous.

(b) Show that $f: (X, \mathcal{T}) \rightarrow (Y, \mathcal{U})$ is continuous if and only if $f[\bar{A}] \subset \bar{f[A]} \quad \forall A \subset X$

OR

(a) Show that compositions of continuous functions are continuous.

onto

(b) Show that $f: (X, \mathcal{T}) \rightarrow (Y, \mathcal{U})$ is a homeomorphism only if

$$f[\bar{A}] = \bar{f[A]} \quad \forall A \subset X$$

5. Define second countable space. Show that a homeomorphic image of a second countable space is second countable.

OR

Prove that every regular Lindelof space is normal.

6. Show that every convergent sequence in Hausdorff space has a unique limit.

OR

Show that normality of a space is a topological property.

7. Show that every second countable space is separable

OR

Show that the space (\mathbb{R}, U) is T_3 space.