

PD-154-S.E.-CV-19
M.A./M.Sc. MATHEMATICS (1st Semester)
Examination, Dec.-2020
REAL ANALYSIS (I)

Time : Three Hours]

[Maximum Marks : 80
[Minimum Pass Marks : 29

Note : Answer from both the Sections as directed. The figures in the right-hand margin indicate marks.

Section-A

1. Answer the following questions:- 1x10=10

- Write one refinement partitions

$$P = \{2, 2.5, 3.1, 3.7, 4\}$$
- If P_1 and P_2 are two partition of interval $[a, b]$ α is bounded and monotonic increasing function on $[a, b]$ then write the relation between lower RS-Sum of P_1 and upper RS-Sum of P_2
- Let $f(x) = x$, $g(x) = x^2$, Does $\int_0^1 f dg$ exist?
- Write the relation between the Riemann integral and the Riemann-Stielfjes integral.
- Does sequence $f_n: [0, 1] \rightarrow \mathbb{R}$
 $f_n(x) = x^n$, $x \in [0, 1]$ converges pointwise?
- Every pointwise convergent series is uniform convergent. (True/False)
- The condition of uniform convergence of series is necessary condition for the validity of term by term integration of that series. (True/False)
- Define contraction mapping.
- Define invertible Linear operators.
- Write the radius of convergence of series

$$\sum \frac{nx^n}{(n+1)^2}$$

2. Answer the following questions:- 2x5=10

- Show that

$$\int_0^2 [x] d(x^2) = 3$$

- Obtain first two Bernstein polynomials for

$$f(x) = e^x, \quad x \in [-1, 1]$$

- For the series of functions $\sum \frac{x}{(n+x^2)^2}$ find a convergent series M_n with

$$\left| \frac{x}{(n+x^2)^2} \right| \leq M_n, \quad \forall n$$

- Prove that contraction map is always continuous.

- Find the radius of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{z^n}{(n+1)^B} \quad (B > 1)$$

Section-B

12x5=60

Answer all questions.

- Let f be continuous and α monotonically increasing on $[a, b]$ then $f \in R(\alpha)$
On $[a, b]$
- If the $\lim_{\|P\| \rightarrow 0} S(P, f, \alpha)$ exists then $f \in R(\alpha)$ and $\lim_{\|P\| \rightarrow 0} S(P, f, \alpha) = \int_a^b f d\alpha$
OR
State and prove Implicit function theorem.
- If Y' is continuous on $[a, b]$ then prove that Y is rectifiable and
 $\Lambda(Y) = \int_a^b |Y'(t)| dt$.
OR

State and prove Tauber's theorem.

5. (a) State and prove Cauchy's general principle of uniform convergence.
(b) Prove that sequence $\left\{\frac{nx}{1+n^2x^2}\right\}_{n=1}^{\infty}$ does not converge uniformly on R .
OR
(a) Verify the series $\sum_{n=0}^{\infty} x^n$, $|x| < 1$ for term by term differentiation.
(b) Prove that the series $\sum_{n=1}^{\infty} \frac{n\sqrt{x}}{1+n^2x^3}$ can not be integrated term by term in $[0, \infty]$

6. Prove that Limit function of a uniformly convergent sequence of continuous functions is continuous but converse is not True.
OR
(a) State and prove Chain rule.
(b) Let f maps a convex open set $E \subset R^N$ into R^M , f be differentiable in E and \exists A real number M such that
$$\|f'(x)\| \leq M, \quad \forall x \in E$$

Then prove that
$$|f(b) - f(a)| \leq M|b - a|, \quad \forall a, b \in E$$

7. State and prove Inverse function theorem.
OR
If \vec{f} maps $[a, b]$ into R^k and if $\vec{f} \in R(\alpha)$ for some monotonically increasing function α on $[a, b]$ then prove that $|\vec{f}| \in R(\alpha)$ and
$$\left| \int_a^b \vec{f} d\alpha \right| \leq \int_a^b |\vec{f}| d\alpha$$