

AE-1245

B.Sc. (Part - II)
Term End Examination, 2016-17

MATHEMATICS

Paper - III

Mechanics

Time : Three Hours] [Maximum Marks : 50

नोट : कुल पाँच प्रश्नों के उत्तर दीजिए। प्रत्येक इकाई से एक प्रश्न करना अनिवार्य है। सभी प्रश्नों के अंक समान हैं।

Note : Answer **five** questions in all. **One** question from each Unit is compulsory. All questions carry equal marks.

इकाई / Unit-I

1. (a) सिद्ध कीजिए कि किसी दृढ़ पिण्ड के एक समतल में स्थित विभिन्न बिन्दुओं पर क्रियाशील बलों के एक निकाय का समायोजन एक एकल बल या बलयुग्म में किया जा सकता है।

(2)

Prove that a system of forces acting in one plane at different points of a rigid body can be reduced to a single force or a couple.

(b) लम्बाई a की एक डोरी को चार एकसमान छड़ों के एक समचतुर्भुज के छोटे विकर्ण को बनाती है, समचतुर्भुज की प्रत्येक भुजा की लम्बाई b और भार w है जो बंधे हुए हैं। यदि छड़ों में से एक को क्षैतिज अवस्था में टेक दिया गया है, तो सिद्ध कीजिए कि डोरी में तनाव

$$\frac{2w(2b^2 - a^2)}{b\sqrt{4b^2 - a^2}}$$

है।

A string of length a forms the shorter diagonal of a rhombus of four uniform rods, each of length of side of rhombus is b and weight w which are hinged together. If one of the rods be supported in a horizontal position, then prove that the tension in the string is

$$\frac{2w(2b^2 - a^2)}{b\sqrt{4b^2 - a^2}}$$

(3)

2. (a) लम्बाई l के एकसमान समांग चैन को समान क्षैतिज रेखा में दो बिन्दुओं A तथा B से इस प्रकार लटकाया गया है कि प्रत्येक अन्तस्थ तनाव निम्नतम बिन्दु के तनाव का n गुना है। दर्शाइए कि विस्तृति AB अवश्य ही

$$\frac{l}{\sqrt{n^2-1}} \log\left(n + \sqrt{n^2-1}\right)$$

होगी ।

A uniform homogeneous chain of length l is to be suspended from two points A and B , in the same horizontal line so that the either terminal tension is n times that at the lowest point. Show that the span AB must be

$$\frac{l}{\sqrt{n^2-1}} \log\left(n + \sqrt{n^2-1}\right)$$

(b) दो बराबर भार P दो डोरियाँ ACP और BCP से बंधे हुए हैं जो एक चिकनी खूंटी C के ऊपर होकर जाती है। AB एक भारी दण्ड है जिसका भार w है और जिसका गुरुत्वकेन्द्र A से a फीट और B से b फीट है। दर्शाइए कि AB क्षैतिज से कोण

$$\tan^{-1} \left[\frac{a-b}{a+b} \tan \left(\sin^{-1} \frac{w}{2P} \right) \right]$$

बनाती है ।

(4)

Two equal weights P are attached to two strings, ACP and BCP passing over a smooth peg C . AB is a heavy beam of weight w , whose centre of gravity is a feet from A and b feet from B . Show that AB is inclined to the horizon at an angle

$$\tan^{-1} \left[\frac{a-b}{a+b} \tan \left(\sin^{-1} \frac{w}{2P} \right) \right]$$

इकाई / Unit-II

3. (a) एक दृढ़ पिण्ड के दिए गए बिन्दुओं पर क्रियाशील बलों के किसी दिए गए निकाय की परिणामी को ज्ञात कीजिए।

Find the resultant of any given system of forces acting at given point of a rigid body.

(b) यदि P तथा Q दो अप्रतिच्छेदी बल हैं, जिनकी दिशाएँ लम्बवत हैं, तो दर्शाइए कि केन्द्रीय अक्ष से उनकी क्रिया रेखाओं की दूरियों का अनुपात $Q^2 : P^2$ है।

If P and Q are two non-intersecting forces whose directions are perpendicular, then show that the ratio of distances of the central axis from their lines of action is $Q^2 : P^2$.

(5)

4. (a) समतल $lx + my + nz = 1$ का शून्य विक्षेप बिन्दु ज्ञात कीजिए।

Find the null point of the plane $lx + my + nz = 1$.

(b) किसी दिए गए बल-निकाय के केन्द्रीय अक्ष का समीकरण ज्ञात कीजिए।

Find the equation of the central axis of any given system of forces.

इकाई / Unit-III

5. (a) एक सरल रेखा में सरल आवर्त गति करते हुए एक बिन्दु के वेग v_1 तथा v_2 हैं, जबकि इसकी केन्द्र से दूरीयाँ x_1 तथा x_2 हैं। दर्शाइए कि गति का आवर्तकाल

$$2\pi\sqrt{\frac{x_1^2 - x_2^2}{v_2^2 - v_1^2}}$$

है।

A point in a straight line with S.H.M. has velocities v_1 and v_2 , when its distances from the centre are x_1 and x_2 . Show that the period of motion is

$$2\pi\sqrt{\frac{x_1^2 - x_2^2}{v_2^2 - v_1^2}}$$

(6)

(b) एक तोप एक गतिशील प्लेटफॉर्म से चलाई जाती है। जब प्लेटफॉर्म V वेग से आगे एवं पीछे चलता है, तो गोली के परास क्रमशः R तथा S प्राप्त होते हैं। सिद्ध कीजिए कि तोप का उन्नतांश कोण

$$\tan^{-1} \left[\frac{g(R-S)}{4V^2(R+S)} \right]$$

है ।

A gun is fired from a moving platform and let the ranges of the shot observed to be R and S , when the platform is moving forward and backward respectively with velocity V . Prove that the angle of elevation of the gun is

$$\tan^{-1} \left[\frac{g(R-S)}{4V^2(R+S)} \right]$$

6. (a) एक कण केन्द्रीय त्वरण $\mu(r^5 - c^4 r)$ से गतिमान है। यह स्तब्धिका से दूरी c पर वेग $\sqrt{\frac{2\mu}{3}} c^3$ से प्रक्षिप्त किया गया है। दर्शाइए कि इसका पथ $x^4 + y^4 = c^4$ वक्र है।

(7)

A particle is moving with central acceleration $\mu(r^5 - c^4r)$ being projected from an apse

at a distance c with velocity $\sqrt{\frac{2\mu}{3}}c^3$. Show that its path is the curve $x^4 + y^4 = c^4$.

(b) m द्रव्यमान का एक कण हल्के तार, जो दो स्थिर बिन्दुओं के बीच तना हुआ है और इसका तनाव T है, से बांध दिया गया है। यदि दोनों सिरों से कण की दूरियाँ a, b हैं, तो सिद्ध कीजिए कि m द्रव्यमान के एक अल्प अनुप्रस्थ दोलन का आवर्तकाल

$$2\pi\sqrt{\frac{mab}{T(a+b)}}$$

है।

A particle of mass m is attached to a light wire which is stretched tightly between two fixed points with a tension T . If a, b are the distances of the particle from the two ends, prove that the period of a small transverse oscillation of mass m is

$$2\pi\sqrt{\frac{mab}{T(a+b)}}$$

(8)

इकाई / Unit-IV

7. (a) एक कण केन्द्रीय त्वरण $\left[= \frac{\mu}{(दूरी)^2} \right]$ के

अन्तर्गत गति प्रारम्भ करता है, यह दूरी R से

वेग V से प्रक्षिप्त की जाती है। यदि प्रक्षेप कोण

$$\sin^{-1} \frac{\mu}{VR \left(V^2 - \frac{2\mu}{R} \right)^{\frac{1}{2}}}$$

है, तो दर्शाइए कि पथ एक आयताकार अतिपरवलय है।

A particle moves with a central acceleration

$\left[= \frac{\mu}{(\text{Distance})^2} \right]$, it is projected with

velocity V at a distance R . Show that its path is a rectangular hyperbola, if the angle of projection is

$$\sin^{-1} \frac{\mu}{VR \left(V^2 - \frac{2\mu}{R} \right)^{\frac{1}{2}}}$$

(9)

(b) एक बिन्दु एकसमान चाल V से साइक्लॉइड $s = 4a \sin \psi$ पर गमन करता है। पथ के किसी बिन्दु पर त्वरण ज्ञात कीजिए।

A point describes on the cycloid $s = 4a \sin \psi$ with uniform speed V . Find its acceleration at any point.

8. (a) एक कण ऊर्ध्वाधर समतल में एक दिए हुए रूक्ष वक्र पर गुरुत्व के अन्तर्गत नीचे की ओर खिसकता है। गति की विवेचना कीजिए।

A particle slides down on a given rough curve in a vertical plane under gravity. Discuss the motion.

(b) एक कण अपने भार के अन्तर्गत कस्प से गति प्रारंभ करके चक्रज पर नीचे की ओर गिरता है। दर्शाइए कि जब यह शीर्ष पर पहुंचता है तब वक्र पर दाब कण के भार का दुगना हो जाता है।

A particle falls down on a cycloid under its own weight starting from the cusp. Show that when it arrives at the vertex the pressure on the curve is twice the weight of the particle.

(10)

इकाई / Unit-V

9. (a) जब गुरुत्वीय आकर्षण में कोई कण ऊर्ध्वाधरन: U वेग से ऊपर की ओर प्रक्षेपित किया जाए और माध्यम का प्रतिरोधी बल उसके वेग के समानुपाती हो, तो कण की गति की विवेचना कीजिए। (सिर्फ दूरी और वेग के बीच संबंध)।

A particle is projected upwards with a velocity U in a medium whose resistance varies as the velocity. Discuss the motion of the particle. (only relation between distance and velocity).

(b) वर्षा की एक बूँद, जो स्वतंत्रतापूर्वक गिर रही है। प्रत्येक क्षण आयतन में एक वृद्धि, जो उस क्षण पृष्ठ का λ गुणा है, ग्रहण करती है, t समय पश्चात वेग ज्ञात कीजिए तथा t समय में गिरी हुई दूरी भी ज्ञात कीजिए।

A spherical raindrop, falling freely, receives in each instant an increase of volume equal to λ times its surface at that instant; find the velocity at the end of time t and the distance fallen through in time t .

(11)

10. (a) यदि एक कण त्रिविम दिशा में गति करता है, तो कार्तीय निर्देशांकों के पदों में कण का त्वरण ज्ञात कीजिए।

If a particle moves in three dimension, then find the acceleration of a particle in terms of Cartesian co-ordinates.

(b) कोई कण गुरुत्व के अन्तर्गत, एक माध्यम जिसका अवरोध वेग के वर्ग के अनुक्रमानुपाती है, x दूरी गिरता है। यदि कण द्वारा प्राप्त वास्तविक वेग v हो, इसके द्वारा प्राप्त v_0 का वेग हो जबकि कोई अवरोधी माध्यम नहीं है तथा सीमान्त वेग V है तो दर्शाइए कि

$$\frac{v^2}{v_0^2} = 1 - \frac{1}{2} \frac{v_0^2}{V^2} + \frac{1}{2.3} \frac{v_0^4}{V^4} - \dots$$

A particle falls from rest under gravity through a distance x in a medium whose resistance varies directly as square of the velocity. If v is the velocity actually acquired by it, v_0 the velocity it would have acquired, there has been no resisting medium and V the terminal velocity, show that

$$\frac{v^2}{v_0^2} = 1 - \frac{1}{2} \frac{v_0^2}{V^2} + \frac{1}{2.3} \frac{v_0^4}{V^4} - \dots$$