

UHN-25003

(N011) B.Sc. (Math Group)
(FIRST SEMESTER)

Examination, Dec.-2024

Compulsory/Optional

PHYSICS-MECHANICS

Time : Three Hours / Maximum Marks : 70
/ Minimum Marks : 33

नोट : दोनों खण्डों से निर्देशानुसार उत्तर दीजिए। प्रश्नों के अंक उनके दाहिनी ओर अंकित हैं।

Note : Answer from both section as directed.
The figure in the right-hand margin indicate marks.

खण्ड-अ/Section-A

1. निम्न वस्तुनिष्ठ प्रश्नों के उत्तर दीजिये-
Answer the following objective question.

$1 \times 10 = 10$

(a) पंच सिद्धान्तिका के रचयिता कौन है?

- (i) वाराहमिहिर
- (ii) बौद्धायन
- (iii) आर्यभट्ट
- (iv) कणाद

(2)

Panch Siddhantika is given by?

- (i) Varahmihira
- (ii) Baudhayana
- (iii) Aryabhatta
- (iv) Kanad

(b) बाह्यबलों की अनुपस्थिति में निकाय के द्रव्यमान का वेग होता है :

- (i) शून्य
- (ii) नियत
- (iii) समय के साथ बढ़ता हुआ
- (iv) समय के साथ घटता हुआ

In absence of external forces, the velocity of centre of mass is :

- (i) Zero
- (ii) Constant
- (iii) Increasing with time
- (iv) Decreasing with time

(c) स्थिर बल होता :

- (i) संरक्षी बल
- (ii) असंरक्षी बल
- (iii) आवर्त बल
- (iv) घर्षण बल

The electrostatic force is a

(3)

- (i) Conservative force
- (ii) Non-conservative force
- (iii) Periodic force
- (iv) Frictional force

(d) कोणीय संवेग संरक्षित होने का तात्पर्य है कि:

- (i) उर्जा अचर है
- (ii) क्षेत्रीय वेग अचर है
- (iii) रेखीय संवेग अचर है
- (iv) गति एक तल में नहीं है।

Conservation of angular momentum

implies that the:

- (i) Energy is conserved
- (ii) Areal velocity is conserved
- (iii) Linear momentum is conserved
- (iv) Motion is not in a plane

(e) प्रति एकांक ऐंथन के लिए आवश्यक बल आधूर्ण है:

Couple required per unit radian twist is

$$(i) \frac{\pi \eta r^4}{2\ell}$$

$$(ii) \frac{\pi^2 \eta r^4}{4\ell}$$

$$(iii) \frac{\pi \eta r^4}{4\ell}$$

$$(iv) \frac{\pi^2 \eta r^4}{2\ell}$$

(f) बादल वायुमण्डल में तैरते हैं क्योंकि :

(4)

- (i) उनका ताप कम होता है।
- (ii) उनकी श्यानता वायु से कम होती है।
- (iii) उनका घनत्व कम होता है।
- (iv) वहाँ निम्न दाब उत्पन्न हो जाता है।

The clouds float in air because:

- (i) They are at low temperature.
- (ii) They are less viscoelastic than air.
- (iii) They are less dense.
- (iv) A low pressure is developed there

(g) किसी ग्रह का घनत्व ρ है। उस ग्रह के समीप वृत्तीय मार्ग में परिभ्रमण करने वाले उपग्रह का आवर्तकाल होगा:

If a is the universal gravitational constant and ρ is the density of a planet, the period of revolution of a satellite revolving in a circular orbit near the surface of that planet will be :

$$(i) \sqrt{G\rho} \quad (ii) \sqrt{\frac{3G\rho}{\pi}}$$

$$(iii) \sqrt{\frac{G}{3\pi\rho}} \quad (iv) \sqrt{\frac{3\pi}{G\rho}}$$

(5)

(h) सरल आवर्ती गति में एक कण का समीकरण है:

$x = 3 \sin \omega t + 4 \cos \omega t$ है तो कण का आयाम होगा

The equation of a particle in simple harmonic motion is

$x = 3 \sin \omega t + 4 \cos \omega t$. The amplitude of oscillation of a particle will be

(i) 7 (ii) 1

(iii) 5 (iv) 12

(i) दो जड़त्वीय फ्रेमों को सम्बन्धित करने वाली सही रूपान्तरण का समीकरण है-

(i) गैलीलियन

(ii) लारेन्ज

(iii) न्यूटोनियन

(iv) इनमें से कोई नहीं

The correct transformations connecting the two inertial frames are :

(i) Galilean

(ii) Lorentz

(iii) Newtonian

(iv) None of these

(6)

(j) सापेक्षकीय वेग से गतिमान कण की गतिज ऊर्जा का सूत्र है:

The expression for the kinetic energy of a particle moving with relativistic velocity is :

(i) mc^2 (ii) $\frac{1}{2}mv^2$

(iii) $mc^2 - moc^2$ (iv) moc^2

2. निम्न लघु प्रश्नों के उत्तर दीजिये- $5 \times 4 = 20$

Answer the following short answer type.

(i) किसी स्केलर फलन के ग्रेडिएण्ट से क्या तात्पर्य है, उदाहरण द्वारा समझाइए?

What is meant by gradient of scalar-field? Derive its expression in terms of operator?

(ii) प्रत्यास्थ तथा अप्रत्यास्थ टक्करों के मध्य मुख्य अन्तर बताइए।

State the major difference between elastic and inelastic collision.

(iii) पानी जितना गहरा होता है उतना ही शान्त बहता है, क्यों?

Deeper water is still, why?

(iv) पृथकी तल से nR ऊँचाई पर परिक्रमण करते हुए उपग्रह के आवर्तकाल T का व्यंजक निर्गमित कीजिए जहाँ R पृथकी की त्रिज्या है।

Deduce an expression for the time period T of a satellite orbiting in a circular path at height nR from earth's surface where R the earth's radius.

(7)

(v) पृथ्वी की ओर आकाश से गिरते हुए μ -मेसॉन पर समय के विस्तार की व्याख्या कीजिए।

Explain time dilation on the basis of μ -meson falling on the earth from the space.

खण्ड-ब/Section-B

Descriptive Question : $4 \times 10 = 40$

वर्णनात्मक प्रश्न :

3. किसी सदिश क्षेत्र के ग्रेडियेण्ट से क्या तात्पर्य है? आपरेटर $\vec{\nabla}$ के पदों में इसका सूत्र व्युत्पन्न कीजिए।
What is meant by gradient of a scalar field. Derive its expression in terms of the operator $\vec{\nabla}$.

अथवा/OR

सिद्ध कीजिए कि दो पिण्डों के प्रत्यास्थ संघट्ठ में ऊर्जा वितरण तब अधिकतम होता है जब उनके द्रव्यमान बराबर होते हैं।

Prove that in elastic collision of two bodies the energy distribution is maximum when they are of equal masses.

4. धूर्णन गति कर रहे पिण्ड की गतिज ऊर्जा का व्यंजक निर्गमित कीजिए।

Deduce expression for the kinetic energy of a rotating body.

अथवा/OR

एक समान बेलनाकार छड़ के लिए ऐंठन दृढ़ता का व्यंजक की व्युत्पत्ति कीजिए तथा θ रेडियन ऐंठन घुमाव के लिए आवश्यक कार्य की गणना कीजिए।

(8)

Derive an expression for the torsional rigidity of a uniform cylindrical rod. How much work is needed to produce θ radian twist in the cylinder.

5. केन्द्रीय बल क्या है? सिद्ध कीजिए कि केन्द्रीय बल संरक्षी होता है।
What is a central force? Prove that a central force is conservative.

अथवा/OR

सरल लोलक क्या है? सिद्ध कीजिए कि अल्प आयाम के सरल लोलक के दोलन सरल आवर्ती होते हैं।

What is a simple pendulum? Show that the oscillation of a simple pendulum for small amplitude are simple harmonic.

6. समझाइए कि माइकल्सन-मोर्ले का प्रयोग किस प्रकार दर्शाता है कि प्रकाश का वेग सभी जड़त्वीय निर्देश फ्रेमों में सभी दिशाओं में c ही होता है।

Explain the negative result of the Michelson Morley experiment-How does the experiment conclude that the velocity of light is same equal to c in all the inertial frames, in all directions.

अथवा/OR

आइन्स्टीन का द्रव्यमान ऊर्जा संबंध $E = mc^2$ निर्गमित कीजिए।

Derive the Einstein's mass-energy relation $E = mc^2$.