

(b) यांग प्रमेय का कथन लिखकर सिद्ध कीजिए।

State and prove young theorem.

(c) फलन $f(x)=x^2$ के लिए $-\pi < x < \pi$ में फोरियर श्रेणी ज्ञात कीजिए।

अतएव प्रतिपादित कीजिए-

$$\frac{\pi^2}{12} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$$

Find the Fourier series of the function $f(x)=x^2$, $-\pi < x < \pi$. Hence deduce that

$$\frac{\pi^2}{12} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$$

इकाई-II/Unit-II

2. (a) सिद्ध कीजिये कि प्रत्येक सतत फलन रीमॉन समाकलनीय होता है।

Prove that every continuous function is Riemann integrable.

UF-10365

B.A./B.Sc. (Part-III)

Term End Examination, 2023-24

MATHEMATICS

Paper-I

(Analysis)

Time : Three Hours /

/Maximum Marks : 50

नोट : प्रत्येक प्रश्न में से किन्हीं दो भागों के उत्तर दीजिए। सभी प्रश्नों के अंक समान हैं।

Note : Answer any **two** parts from each question. **All** questions carry equal marks.

इकाई-I/Unit-I

1. (a) श्रेणियों के लिए "आंशिक संकलन सूत्र" का कथन लिखिए एवं सिद्ध कीजिये।

State and prove "Partial Summation formula" for series.

UF-10365

(Turn Over)

UF-10365

(Continued)

(3)

(b) समाकलन $\int_0^2 \frac{\log x}{\sqrt{2-x}} dx$ के अभिसारिता का परीक्षण कीजिए।

Test the convergence of $\int_0^2 \frac{\log x}{\sqrt{2-x}} dx$.

(c) मान ज्ञात कीजिए :

$$\int_0^{\infty} \frac{\tan^{-1} ax - \tan^{-1} bx}{x} dx.$$

$$\text{Evaluate : } \int_0^{\infty} \frac{\tan^{-1} ax - \tan^{-1} bx}{x} dx.$$

इकाई-III/Unit-III

3. (a) सिद्ध कीजिये कि दो सम्मिश्र संख्याओं के योग का मापांक सदैव उनके मापांकों के योग से छोटा या बराबर होता है। इसकी ज्यामितीय व्याख्या भी दीजिये।

Prove that the modulus of the sum of two complex numbers is always less than or equal to the sum of their Moduli.

(4)

(b) यदि $u = (x-1)^3 - 3xy^2 + 3y^2$, तब v का निर्धारण इस प्रकार कीजिए कि $u+iv, x+iy$ का एक नियमित फलन है।

If $u = (x-1)^3 - 3xy^2 + 3y^2$, determine v so that $u+iv$ is a regular function of $x+iy$.

(c) दर्शाइए कि रूपान्तरण $w = \frac{5-4z}{4z-2}$ वृत्त $|z|=1$ को w -तल में इकाई वृत्त पर रूपान्तरित करता है। रूपान्तरित वृत्त का केन्द्र ज्ञात कीजिए।

Show that the transformation $w = \frac{5-4z}{4z-2}$ transform the circle $|z|=1$ into a circle of radius unity in w -plane and find the centre of the circle.

(5)

इकाई-IV/Unit-IV

4. (a) विविक्त दूरीक समष्टि को परिभाषित कीजिए एवं सिद्ध कीजिए।

Define and prove the Discrete Metric Space.

(b) सिद्ध कीजिए कि किसी दूरीक समष्टि में संकृत समुच्चयों के एक स्वेच्छ संग्रह का सर्वनिष्ठ भी संकृत होता है।

Prove that in a metric space, the intersection of an arbitrary collection of closed sets is closed.

(c) सिद्ध कीजिए कि कोई परिमेय संख्या ऐसी नहीं है जिसका घन 3 है।

Show that there is no Rational number whose cube is 3.

UF-10365

(Turn Over)

(6)

इकाई-V/Unit-V

5. (a) सिद्ध कीजिए कि प्रति दूरीक समष्टि प्रथम गणनीय होती है।

Prove that every metric space is First countable.

(b) मानलो (X, d) और (Y, P) दो दूरीक समष्टियाँ हैं, और $f : X \rightarrow Y$ एक फलन है, तब f संतत होगा यदि और केवल यदि $f^{-1}(F)$; X में संकृत है, जब F, Y में संकृत हैं।

Let (X, d) and (Y, P) be two metric spaces and $f : X \rightarrow Y$ be a function.

Then f , is continuous if and only if $f^{-1}(F)$ is closed in X whenever F is closed in Y .

UF-10365

(Continued)

(7)

(c) सिद्ध कीजिये कि किसी संहत समिक्षा में बोल्जानो
वाइस्ट्रास प्रगुण होता है।

Prove that every compact Metric
space has the Bolzano-Weierstrass
property.