

AF-3045

B.A./B.Sc. (Part - II)
Term End Examination, 2017-18

MATHEMATICS**Paper - III****[Time : Three Hours]****[Maximum Marks : 50]**

नोट : प्रत्येक इकाई से एक-एक प्रश्न चुनते हुए कुल पाँच प्रश्नों के उत्तर दीजिए। सभी प्रश्नों के अंक समान हैं।

Note : Answer five questions in all, selecting one question from each Unit. All questions carry equal marks.

इकाई / Unit-I

1. (a) किसी दृढ़ पिंड के विभिन्न विन्दुओं पर क्रियाशील समतलीय बलों के निकाय के साम्य अवस्था में होने की आवश्यक प्रतिवंध ज्ञात कीजिए।

Find the necessary condition for the equilibrium of the rigid body subjected by a system of coplanar forces acting at different points of the body.

(b) लामी का प्रमेय लिखिए एवं सिद्ध कीजिए।
State and prove Lami's Theorem.

*(Turn Over)***(2)**

2. (a) केटनरी का कार्तीय समीकरण ज्ञात कीजिए।
Find Cartesian equation of common catenary.

(b) एक अर्द्ध-गोला समान त्रिज्या के एक गोले पर संतुलन में रखा हुआ है दर्शाइए कि साम्यावस्था अस्थायी है जब गोले पर अर्द्ध-गोले का बक्र पृष्ठ और स्थायी है जब अर्द्ध-गोले का सपाट पृष्ठ रखा हुआ है।

A hemisphere sets in equilibrium on a sphere of equal radius, show that the equilibrium is unstable when the curved surface of hemisphere rests on sphere and stable when the flat surface of hemisphere rest on the sphere.

इकाई / Unit-II

3. (a) तीन बल P, Q, R क्रमशः सरल रेखाओं $x=0, y-z=a; y=0, z-x=a; z=0, x-y=a$ के अनुदिश क्रियाशील हैं। सिद्ध कीजिए कि उन्हें एक बलयुग्म के तुल्य लघुकृत नहीं किया जा सकता।

Three forces P, Q, R acting along the straight lines $x=0, y-z=a; y=0, z-x=a; z=0, x-y=a$. Show that they can not be reduce equivalently to a couple.

(3)

(b) सिद्ध कीजिए कि एक दृढ़ पिंड पर क्रियाशील बलों के एक दिये गये निकाय का एक एकल बल और एक बलयुग्म सहित, जिसका अक्ष बल की क्रिया रेखा की दिशा से संपाती है, में समानयन किया जा सकता है।

Prove that a given system of forces acting on a rigid body can be reduced to a single force together with a couple whose axis coincides with the direction of the force.

(a) डायनेम (X, Y, Z, L, M, N) के लिए समतल $x + y + z = 0$ के शून्य विक्षेप स्थिति ज्ञात कीजिए।

Find the null point of the plane $x + y + z = 0$ for the dyname (X, Y, Z, L, M, N) .

(b) सिद्ध कीजिए कि किसी भी बल निकाय की शून्य रेखाओं में से चार किसी अतिपरवलय के जनक होते हैं, दो जनकों के एक निकाय के सदस्य होते हैं और दो अन्य निकाय के।

Prove that among the null lines of any system of forces, four are generators of any hyperboloid two belonging to one system of generators and two to the other system.

(Turn Over)

(4)

इकाई / Unit-III

5. (a) एक कण सरल आवर्त गति में गतिपान है। गति की विवेचना कीजिए।

A particle executes simple harmonic motion. Discuss the motion.

(b) एक सीधा एवं चिकना ट्यूब अपने एक स्थिर सिरे के सापेक्ष एक समान कोणीय वेग से किसी क्षेत्रिज तल में घूमता है। यदि शून्य समय पर इसके अंदर एक कण स्थिर सिरे में a दूरी पर हो और वह ट्यूब के सहारे वेग v से चल रहा हो तो सिद्ध कीजिए कि, समय पर इसकी दूरी

$$a \cosh wt + \frac{v}{w} \sinh wt \text{ होगी।}$$

A straight smooth tube revolves with angular velocity in a horizontal plane about one extremity which is fixed. If at zero time a particle inside it be at a distance a from a fixed end and moving with velocity v along the tube, then show that its distance at t time will be

$$a \cosh wt + \frac{v}{w} \sinh wt$$

6. (a) सिद्ध कीजिए कि प्रक्षेप्य पथ एक परवलय होता है।

Prove that path of a projectile is parabola.

(5)

(b) यदि कोई कण वक्र $r = a \sin \theta$ पर गतिशील है, तब उस पर लगाने वाले बल का नियम ज्ञात कीजिए।

If any particle is moving on the curve $r = a \sin \theta$, then find the law of force applied on it.

इकाई / Unit-IV

7. (a) सूर्य की परिक्रमा करने वाले किसी ग्रह का महत्तम तथा न्यूनतम वेग क्रमशः 30 और 29.2 किमी प्रति सेकंड है। उसकी कक्षा की उल्केन्द्रता ज्ञात कीजिए।

The maximum and minimum velocities of a planet revolving around the sun are 30 and 29.2 km/sec respectively. Find the eccentricity of its orbit.

(b) एक कण एक समतलीय वक्र पर गतिशील है। यदि स्पर्श रेखाओं और अंभलाप्तिक त्वरण सदैव अचर रहते हैं, तो मिठु कीजिए कि कोण ψ जो गति की दिशा समय t में घूमती है। समीकरण $\psi = A \log(1 + Bt)$ द्वारा निर्धारित होती है।

A particle is describing on a plane curve. If the tangential and normal accelerations are each constant throughout the motion, then prove that the angle ψ , through which direction of motion turns in time t , is given by $\psi = A \log(1 + Bt)$.

(6)

8. (a) यदि कोई भारी कण एक ऊर्ध्वाधर विकर्ण वक्र पर गमन करे, तो उसकी गति की व्याख्या कीजिए।

If a heavy particle is made to move on a smooth curve in a vertical plane, then discuss the motion.

(b) एक कण जिस पर कोई बल किया नहीं कर रहा है, रूक्ष गोले के आंतरिक पृष्ठ के अनुदिश प्रक्षेप किया जाता है। दर्शाइये कि वह $\frac{a}{\mu v} (e^{2\mu} - 1)$ समय पश्चात प्रक्षेप विन्दु पर वापस लौट आयेगा जहाँ a गोले की त्रिज्या, प्रक्षेप वेग v , तथा घर्षण गुणांक μ हैं।

A particle is projected along the inner surface of a rough sphere and is acted on by no forces. Show that it will return to the point of projection at the

end of time $\frac{a}{\mu v} (e^{2\mu} - 1)$, where a is

the radius of the sphere, v is the velocity of projection and μ is the coefficient of friction.

(7)

इकाई / Unit-V

9. (a) यदि ऊर्ध्वांशतः ऊपर की ओर ऐसे माध्यम में जिसमें प्रतिरोधी बल वेग के बर्ग के समानुपाती है। प्रक्षेपित कण का प्रक्षेप वेग v तथा अंतिम वेग v हो, तो सिद्ध कीजिए कि इसे महनम

$$\text{उन्नाई प्राप्त करने में लगा समय } \frac{v}{g} \tan^{-1} \left(\frac{u}{v} \right)$$

होगा।

A particle is projected upwards in a medium whose resistance is proportional to the square of the velocity, the velocity of projection is u and the final velocity is v . Then prove that the time taken to attained the greatest height is

$$\frac{v}{g} \tan^{-1} \left(\frac{u}{v} \right).$$

(b) ध्रुवीय निर्देशांक के पदों में कण का त्वरण ज्ञात कीजिए।

Find the acceleration of a particle in terms of polar coordinates.

10. (a) एक कण एक चिकने गोले पर केवल पृष्ठ के दबाव के अंतर्गत गतिमान है। दर्शाइए कि इसका पथ $\cot \theta = \cot \beta \cos \phi$ द्वारा प्राप्त होगा जहाँ θ और ϕ कण के कोणीय निर्देशांक हैं।

(8)

A particle moves on a smooth sphere under no forces except the pressure of the surface. Show that its path is given by the equation $\cot \theta = \cot \beta \cos \phi$, where θ and ϕ are its angular coordinates.

(b) रेत से भरी एक गाड़ी एक अचर बल F द्वारा खींची जाती है। इसमें से रेत का द्रव्यमान λ । इकाई प्रति सेकेंड की दर से गिर रहा है। सिद्ध कीजिए कि t समय के अंत में इसका वेग $-\frac{F}{\lambda} \log \left(1 - \frac{\lambda t}{M} \right)$ होगा जहाँ M प्रारंभ में गाड़ी और इसमें रेत का द्रव्यमान है।

A trailer full of sand is pulled by a constant force F . Sand leaks out at the rate of λ units of mass per second. Show that the velocity at the end of time t is

$$-\frac{F}{\lambda} \log \left(1 - \frac{\lambda t}{M} \right), \text{ where } M \text{ is the initial mass of the trailer and contents.}$$