

AHO 1108 CV-19
B.A./B.Sc. (Part-I) (Ex./Suppl.)
Term End Examination, 2019-20
MATHEMATICS-III

Time:- Three Hours]

[Maximum Marks:50

नोट : प्रत्येक प्रश्न से किन्हीं दो भागों को हल कीजिए। सभी प्रश्नों के अंक समान हैं।

Note: Solve any **two** parts from each question. All questions carry equal marks.

इकाई / Unit - I

1. (a) निम्नलिखित सदिशों के व्यूक्तम पद्धति के सदिश ज्ञात कीजिए।

Find the reciprocal system of vectors of following vectors.

$$2i+3j-k, i-j-2k, -i+2j+2k$$

(b) सिद्ध कीजिए कि

Prove that :

$$\operatorname{div}(r^n \vec{r}) = (n+3) r^n$$

$$\text{जहाँ } \vec{r} = xi + yj + zk \text{ और } r = |\vec{r}|$$

(c) सिद्ध कीजिए

Prove that :

$$\operatorname{grad}(\vec{A} \cdot \vec{B}) = (\vec{A} \cdot \vec{\nabla})\vec{B} + (\vec{B} \cdot \vec{\nabla})\vec{A} + \vec{A} \times \operatorname{curl} \vec{B} + \vec{B} \times \operatorname{curl} \vec{A}$$

इकाई / Unit - II

2. (a) यदि $\vec{r} = 5t^2i + tj - t^3k$ तब सिद्ध कीजिए कि

if $\vec{r} = 5t^2i + tj - t^3k$ then prove that :

$$\int_1^2 (\vec{r} \times \frac{d^2 \vec{r}}{dt^2}) dt = -14i + 75j - 15k$$

(b) $\int_C \vec{F} \cdot d\vec{r}$ का मूल्यांकन कीजिए जहाँ $\vec{F} = x^2i - xyj$ तथा वक्र C, xy- समतल $y^2 = x$ का (0,0) से (1,1) तक चाप है।

Evaluate $\int_C \vec{F} \cdot d\vec{r}$ Where $\vec{F} = x^2i - xyj$ and C is a curve $y^2 = x$ from (0,0) to (1,1) in xy-plane.

(c) $\iint_S (\vec{F} \cdot \hat{n}) ds$ का मान ज्ञात कीजिए जहाँ $\vec{F} = 4xzi - y^2j + yzk$ तथा S से घन का पृष्ठ है जो कि समतलों x=0, x=1, y=0, y=1, z=0, z=1 से घिरा हुआ है।

Evaluate $\iint_S (\vec{F} \cdot \hat{n}) ds$ Where $\vec{F} = 4xzi - y^2j + yzk$ and S is surface of cube bounded by planes x=0, x=1, y=0, y=1, z=0, z=1.

इकाई / Unit - III

3. (a) प्रतिबंध ज्ञात कीजिए जब दो शांकव

$$\frac{l_1}{r} = 1 + e_1 \cos\theta \text{ तथा } \frac{l_2}{r} = 1 + e_2 \cos(\theta - \alpha) \text{ एक दूसरे को स्पर्श करते हैं।}$$

Find the condition when conics

$$\frac{l_1}{r} = 1 + e_1 \cos\theta \text{ and } \frac{l_2}{r} = 1 + e_2 \cos(\theta - \alpha) \text{ touches each other.}$$

(b) शांकव $\frac{l}{r} = 1 + e \cos\theta$ के किसी बिन्दु P(α) पर अभिलंब का समीकरण ज्ञात कीजिए।

Find the equation of Normal of conics

$$\frac{l}{r} = 1 + e \cos\theta \text{ at point P}(\alpha).$$

(c) निम्न शांकव का अनुरेखण कीजिए –

Trace the following conic -

$$3(3x-2y+4)^2 + 2(2x+3y-5)^2 = 39$$

4. (a) वृत्त $x^2 + y^2 + z^2 - 5 = 0$, $x + 2y + 3z - 3 = 0$ से होकर जाने वाले और समतल $4x + 3y - 15 = 0$ को स्पर्श करने वाले गोलों का समीकरण ज्ञात कीजिए।

Find the equation of spheres which passes through circle $x^2 + y^2 + z^2 - 5 = 0$, $x + 2y + 3z - 3 = 0$ and touches the plane $4x + 3y - 15 = 0$

(b) शंकु का समीकरण ज्ञात कीजिए जिसका शीर्ष $(1, 1, 0)$ और आधार $x^2 + z^2 = 4$, $y = 0$. Find the equation of cone whose vertex is $(1, 1, 0)$ and base curve is $x^2 + z^2 = 4$, $y = 0$.

(c) गोले $x^2 + y^2 + z^2 = a^2$ का अन्वालोपी बैलन ज्ञात कीजिए जिसके जनक $\frac{x}{l} + \frac{y}{m} + \frac{z}{n}$ के समांतर है।

Find the equation of enveloping cylinder of sphere $x^2 + y^2 + z^2 = a^2$ whose generators are parallel to $\frac{x}{l} + \frac{y}{m} + \frac{z}{n}$.

5. (a) दर्शाइए कि समतल $8x - 6y - z = 5$ परवलय $3x^2 - 2y^2 = 6z$ का स्पर्शतल है। स्पर्श बिन्दु का निर्देशांक ज्ञात कीजिए।

Prove that plane $8x - 6y - z = 5$ is tangent plane of paraboloid $3x^2 - 2y^2 = 6z$ find tangent points.

(b) अतिपरवलयज $\frac{x^2}{1} + \frac{y^2}{4} - \frac{z^2}{9} = 1$ के बिन्दु $(1, 2, -3)$ से होकर जाने वाले जनकों के समीकरण ज्ञात कीजिए।

Find the equation of generators of Hyperboloid $\frac{x^2}{1} + \frac{y^2}{4} - \frac{z^2}{9} = 1$ passing through point $(1, 2, -3)$

(c) निम्नलिखित समीकरणों को प्रामाणिक रूप में समानयन कीजिए.

$$x^2 + 3y^2 + 3z^2 - 2yz - 2x - 2y + 6z + 3 = 0$$

Reduce the following equations in standard forms.

$$x^2 + 3y^2 + 3z^2 - 2yz - 2x - 2y + 6z + 3 = 0$$